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The concrete strengthening coefficient calculating method of concrete-filled steel tubular members at axial compression based
on the plasticity theories by Saint-Venant and Huber-Mises-Genk. This method is used for calculating values taking into ac-
count the concrete meridional pressure on the pipe and axial stresses in it. The following tubular concrete element strength
equation is obtained, where the stresses in the pipe reach the limit values at the element destruction moment, that is the materials
strength is used completely. An calculation example is given and the strengthening coefficient calculation results are compared
according to both theories. For determining the proposed method accuracy it is planned to compare the results of the calculation
with experimental data.

Keywords: concrete, pipe, plasticity, steel, strength.

AHaJIi3 MiITHOCTI 32J1i300€TOHY B 3aMKHYTOMY
NPOCTOPi MeTaeBoi TPYOH

IMagaikos A.M.!, Koukapsos JI.B.2, 'apbkasa O.B.3, Auapicus K.L*

13-4 Hanjonanenuii ynisepcuter «llontapcbka nositextika imeni FOpis Konapartokay»
2 HanjioHanbHuMiA yHIBEPCUTET BOJHOTO TOCTIONAPCTBA T TPUPOAOKOPHUCTYBAHHS
*Anpeca s muctyBanHHs E-mail: kate.andriec@gmail.com

Ha choroati npoexTyBaHHs CTUCHYTUX TPYOOOCTOHHUX €IEMEHTIB SBIIsIE COO0I0 JOCHTh CKIAIHUI MpPOLEC, IPHIMHOIO Y0T0
€ BIZICYTHICTh PO3PaxyHKOBHX 3aJIS)KHOCTEH, sIKi 6 BpaXOBYBaJIH sIBUIIE 301JIbIICHHS] HECYYOi 3aTHOCTI EJIEMEHTA 32 PaXyHOK
poboTu 6eToHY B yMOBax 00’€MHOTO HaIlpy>KeHO-Ae(OPMOBAHOTO CTaHy, 10 OOYMOBIIOE OJEPKAHHS PO3PAXYHKOBUX 3Ha-
YeHb MILHOCTI HOPMAJIBHOTO Iepepidy TpyOOOETOHHOTO elleMeHTa, Ki OyIyTh HEIOBHKOPHCTaHI. MOXIIMBICTh PO3B’sI3aHHS
ICHYI0401 IPOOIIEMH TI0JISITaE B ITOATBIIOMY JOCITIIKEHHI Teopii po3paxyHKiB MIITHOCTI TpyOOOETOHHHX €IeMEHTIB Ha OCHOBI
BIIPOBAKYBAHUX Cy4aCHHUX HOTJISIIB Ha poO0Ty OETOHY B IOE€HAHHI 3 apMaTypoIo Ta CTajaeBolo 00osioHKo10. Tox Oyio po-
3pO0JICHO METOJUKY aHajli3y MIIHOCTI 3 BUKOPHCTAHHSAM KOe(ilieHTa 3MII[HEHHS 0eTOHy TpyOOOETOHHMX €JIEMEHTIB IpH
OCHOBOMY CTHCHEHHI JUISl OOYHCIICHHS 3HAU€Hb 3 YpaXyBaHHSIM MEPHUJIIOHAJIBHOTO THCKY OeTOHY Ha TpyOy i OCbOBHX Hampy-
JKeHb Y HbOMY Ha OCHOBI Teopiii mnactuunocti Cen-Benana ta ['ybepa — Miseca — ['enki. Kputepiem pyiinyBanus Tpy6o6e-
TOHHOTO eJIeMeHTa 00paHO HOro IpaHUYHMI CTaH NPH AOCSATHEHHI B CTaji TpyOH Hampy»KeHb TEKY4OCTi, 3aBISKH YOMY OTpH-
MaHO TaKe PiBHSHHS MIIHOCTI TPYOOOSTOHHOTO eleMeHTa, B SIKOMY HAIPY)XEHHS B CTiHI[I TpyOH B MOMEHT pyHHYBaHHS eJjie-
MEHTa PUHAMAIOTHCS TPAaHUYHUMHE, TOOTO MIIHICTh MaTepialliB BUKOPHCTOBYETHCS MOBHICTIO. HaBeeHo mpuKiiax BUKOHAHHS
PO3paxyHKy Ta 3[iHCHEHO MOPIBHSIHHS Pe3yJIbTaTiB PO3PaxyHKY MIIHOCTI 3 BUKOPHCTAHHSAM Koe(illieHTa «3MIIHEHHSI» 3a
oboma Teopismu K y TabuuaHild Gopmi, Tak 1 MUIIXoM MoOyRoBH rpadikiB 3aJeKHOCTI 3HAYEHb MIIHOCTI TPyOOOETOHHOTO
eJleMeHTa ¥ koedilieHTa 3MiITHEHHsI OETOHY Bif Horo kiacy. BinmiueHo cyTTeBe 3pocTaHHS KoedilieHTa 3MIITHEHHS JUIs HH-
3bKHX KJIACIB OETOHY IPU BiJIIOBITHOMY 30iIbIICHHI TOBIIMHH CTiHKH TPyOU 3a 000Ma TEOpisMH, IO MOXKE CBIIYUTH IIPO
CYTTEBI pe3epBH MILIHOCTI Ta OTPeOye MOJANBIIOT0 TEOPETHYHOTO i eKCIIEPUMEHTAIBHOTO JIOCII [PKEHHSI.

Kurouogi ciioBa: 3aii306eToH, craib, Tpy0a, MillHICTh, IIIACTUYHICTS.
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Introduction

Currently, many experimental and theoretical studies
have been conducted on the composite elements re-
sistance with concrete-filled circular steel pipe sections
to longitudinal (axial) compression. The occurrence of
the strengthening phenomenon arising in concrete,
which filled the pipe, was proved by the studies results.
This is mainly due to the deformation limiting artifi-
cially created conditions by the outer tube-shell. Also,
a way of applying an external load to the concrete-filled
steel pipes has not gone unnoticed by researchers in this
aspect. The first case is the load application to the pipe
and concrete at the same time [ 1] and as the second case
is considered the situation when the load is applied only
to the concrete [2, 3]. The adhesion level of the contact
“tube — concrete” was taken into consideration as well
as the destruction criteria (the first — for the yield stress
achievement in the pipe, the second — the state of con-
crete element complete destruction).

It is known that much research has been done on these
issues, but despite this, there is still a wide contradic-
tions range in ideas about the pipe and concrete core
joint work. Obviously, the proposed analyzing methods
of composite steel and concrete elements strength are
significantly affected by these contradictions directly.

Review of the research sources and publications

In this study, as the criterion for the destruction of the
composite steel and concrete member the second oper-
ation state is adopted. This ultimate limit state is de-
clared the main one in the norms [4, 5]. Widespread in-
troduction in the modern analysis methods of building
structures of the ultimate state concept based on the
manifestations of composite materials plastic proper-
ties [6, 7] sufficiently substantiates the non-availability
of need to use the first condition (criterion) for calcu-
lating the concrete-filled steel tubular members
strength. The number of different methods is constantly
increasing, in particular it is observed in the norms of
the USA [8, 9], Canada [10], England [11], and Europe
[12].

Therefore, this article presents a possible solution to
the existing problem in the analysis the composite
members strength theory, which is based on the intro-
duced modern views on the concrete work in combina-
tion with reinforcement and steel shell [13 — 18].

Definition of unsolved aspects of the problem

From the above contradictions follows an important
composite steel and concrete elements designing prob-
lem, it is the structural dependencies lack, in terms of
concrete volumetric stress-strain state would clearly
distinguish the strengthening component. A large num-
ber of empirical methods for analyzing the compressed
concrete-filled steel tubular members strength have
been proposed to eliminate this gap. Unfortunately,
their main imperfection is the empiricism accumula-
tion, which does not contribute to a deep understanding
of the tubular concrete elements composites complex
work.

Problem statement

The aim of this paper is to obtain an analytical expres-
sion for the concrete strengthening coefficient calcula-
tion of the concrete-filled steel tubular member core at
the complete destruction moment and the element
strength equation, where the stresses in the pipe would
reach the limit values at the element destruction time,
in case the materials strength completely using.

Basic material and results

Under the action of axial compression, the normal
cross section strength of a cylindrical concrete-filled
steel element, taking into account the concrete meridi-
onal pressure p on the tube (shell) and the meridional
(axial) stresses o in it, will be ensured if condition (1)
is fulfilled (figure 1).

NEdSNRd:Ac(fc"'A"p)"'AS B (1

where A. is the concrete cross-sectional area in the
pipe, As is the pipe cross-sectional area, f; is the limit
stress value in the concrete at its destruction.
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Figure 1 — Design diagram of concrete-filled steel
tubular member deformation mode:
1 — concrete; 2 — tube (shell)

The right equation side (1) is a well-known expres-
sion [6], which only partially takes into account the
shell operation in the boundary state in the axial direc-
tion, so the calculated normal cross section values of
tubular concrete elements do not allow to use materials
completely. Thus, the stress values o1 in equation (1)
can be much less than the stress limit value of the con-
crete-filled steel tubular element steel pipe f; in its ulti-
mate state. The calculations’ consequence with such in-
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accuracy is insufficient use of the concrete-filled ele-
ment normal cross section strength calculated value.
Therefore, the purpose of this article is to eliminate cal-
culations shortcoming, namely to obtain the reinforced
concrete steel tubular element strength equation, which
would allow the materials complete strength.

To obtain the tubular concrete element strength equa-
tion, which would allow to obtain the materials strength
value, which is used in full, consider the tubular con-
crete element part with thickness dz = 1 (Fig. 1).
It should be borne in mind that the circular force inside
the layer of the shell with a thickness dz = 1 (Fig. 1)
from the meridional pressure p of concrete can be found
from the equation oy,--dz = p-R-dz, whence

Oyt
R

2

If expression (2) is substituted in the right equation
part (1), then the result of this action will be such a de-
pendence as:

NRd = Ac[fc +4%¢j+ As Oy - (3)

Given that for equation (3) the values of 4, =27 R ¢
and A, =  R?, their ratio was obtained as:

i— AS 4
R 24 “)

c

After obtaining equation (4), the next step in mathe-
matical transformations will show us expression (3) in
the following form:

NRd =Acfc+20-32'As+As'o-sl . (5)

Now, to represent expression (5) in a more perfect
view, it was introduced the notation:
O-S

=2 -k = o, =
Oyl

lo
22 o =koy . 6
i 2 1 (6)

from (1) it becomes clear that
NRdzAcfc+(2k+l)'As'o-sl : (7

The above expression (7) has two unknown quantities
os1 (or axial stresses oy and meridional stresses o;2) and
k. The first of them, for example o5, can be easily de-
termined from the condition of compatibility and shell
deformation uniformity and concrete in the radial direc-
tion. Given this deformation feature of the tubular con-
crete element layer dz, it can be determined that at point
A the displacement of concrete u. and the steel shell u;
displacement are equal, i.e.

Us = U . ®)

Each of the displacements given in equation (8) can
be calculated from the expressions obtained during the
study. In particular

u, =g, -R= (5]1@ ©))

c

On the other hand, the displacement u. in equation (9)
can be expressed in terms of the circular stresses ;2 un-
known value with the using dependence (2). In this

context:
u = Osa i R,
< | E R

where E. is the concrete deformation modulus;

t 1s the thickness of the shell; R is the shell inner ra-
dius.

The next step is to express the displacement us from
equation (8) due to the unknown value of the circular
stress ay». For this action, it is assumed that all points of
the inner ring of the shell (including points A and C)
due to the pressure p have a radial displacement. As a
consequence of this process, the inner ring expanded by
27 (R + us) — 2w R = 27 X u;,, and the relative value of
this elongation in the circular direction, in its turn, was
& =21 * ug/ 2w R = u, / R. However, considering that
the relative radial displacement value us is also the
value of u; / R, it must be noted that the relative shell
displacements in the radial and circular directions are
the same. If this proof of the shell relative displace-
ments (deformations) equality in the radial and circular
directions was chosen as a basis, that

(10)

(11)

The relative shell deformation in the radial direction
can be found from the dependences based on Hooke's
Law [15 — 17], if the calculation basis is the shell rela-
tive displacements equality in the radial and circular di-
rections in case of concrete-filled steel tubular element
deformation. Taking into account these dependencies,
it becomes clear that

us=&R.

& =3 Sl, (12)

here v is the Poisson's ratio.

From expression (11) the tube shell radial displace-
ment, taking into account equation (12) will take the
following form

(13)

In turn, the unknown value of oy, from equation (7)
can be determined from the dependence, which will be
obtained by replacing in equation (8) each of the quan-
tities by its corresponding expressions (10), (13) and
after performing certain mathematical transformations.
This dependence is given below as expression (14).

512 (14)

here D = 2R is the inner diameter of the shell.
Applying relation (6) and equation (14) at the same
time, it can be reasonably noted like a

1% 14

k= = .
1_2Esi l_zai

D D

N

(15)
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If expression (15) will chosen as a basis, then the de-
pendence (7), which makes it possible to determine the
strength of the concrete-filled steel tubular element nor-
mal cross section, will be appropriately presented in the
following form:

2v

Neg =41+ +1 |40y
1-2a —
*D

(16)

Using equation (7) or (16) with the expression of dis-
placements through stress in order to check the strength
of the cylindrical tubular concrete element under cen-
tral compression normal cross section, it is necessary to
make an additional equation to calculate the meridional
stresses ai1. Such an equation can be reduced to a form
in which it would become the Saint-Venant (17) or Hu-
ber-Mises-Genk (18) plasticity theory condition, and
would occur as follows:

O-s1+6s2:fy~ (17)

652'1 — 0405, +O_§z :f)z (18)

When (17) and (18) are used together with (6) and (7),
it is possible to obtain the final expression form to de-
termine the tubular concrete element under central
compression bearing capacity:

Npg =k A S+ A4S,

s e

(19)

According to the Saint-Venant plasticity theory, in
expression (19) the concrete strengthening coefficient
will be determined from equation (20)

k=1 L (20)
: k+1f. D
where
k= 2VE - - t’
e SUR T PALS @b
E, D *D
based on relation (6) and knowing that
O¢, = 4 O = 4 O,
52 7 s s1°
IR VL
S D

If the theory of Huber-Mises-Genka plasticity is ap-
plied to (19), then to determine the concrete strength-
ening coefficient the following dependence become ob-
tained:

k. =1+4(2k+1—1]f-"’.
NE +k+1 f.D

As for the equations for determining the tubular con-
crete element bearing capacity, after substituting in ex-
pression (19) the equations for calculating the value of
the concrete strengthening coefficient according to both
the above plasticity theories (20, 22) dependencies be-
come obtained by which it becomes possible to calcu-
late the tubular concrete element bearing capacity val-
ues by applying the Saint-Venant (23) and Huber-
Mises-Genk plasticity theories(24).

(22)

4k f, t

]Affc + A S,

k+1f D 23)

NRd:[H

2k +1 ft X
Ny =144 —-1|2=— |Af.+ A S, 24
(+ [\/k2+k+1 ch D] o+ A, @9

Example of calculation. Determine the steel tube con-
crete-filled steel column bearing capacity with a diam-
eter D = 102 mm and a wall thickness ¢+ = 3 mm.
The steel yield strength stresses value f, = 287 MPa
(Es = 210000 MPa, v = 0,3). The tube is filled with
concrete with the characteristics: f = 13,5 MPa,
E.=25600 MPa.

The element bearing capacity is determined based on
Saint-Venant's theory by expression (23) and based on
the Huber-Mises-Genk theory by expression (24) by
the following method.

1. Find the parameter & value the using expression (15):

v v 0,3

k= T3E, 1 = = =0,580,

3,0

1 Lo b 122820320
%) 102

given that in this equation
E, 210000

E. 25600

2. The concrete k. strengthening coefficient when ap-
plying the Saint-Venant plasticity theory by expression
(20) is established:

ak f, ¢

=8,203.

fo—1e 2k Lt 4x0.580 28T 3 418
; k+1f D 0,580+1 13,5 102
The value of the strengthening k., coefficient by ap-
plying the of Huber-Mises-Genk plasticity theory by

expression (22):
- +4(2k+1 jfyt _
NE* +k+1 ) f. D
leal_2x058041 1287 3
J0,580°+0,580+1  )13,5 102
3. The tubular concrete element bearing capacity the
is calculated taking into account theSaint-Venant plas-
ticity theory by expression (23) as:
Ny =k Af. +Af, =(1,918x7238,2x13,5+

2,231.

es“Ted e

+933,1x 287)x 10 = 455,2 kN,

given that in this
As=933.1 mm?.

The tubular concrete element bearing capacity ac-
cording to expression (24) when applying the Huber-
Mises-Genk plasticity theory is calculated as follows:

Npo =k A fo+ A f, =(2,231x7238,2x13,5 +

s e

+933,1x287)x10~° =485,8 kN.

To identify the nature of the change in the concrete
strengthening coefficient value depending on various
parameters, it was calculated in the range of all concrete
classes [19]. For comparison, 2 sections of pipes with a
diameter of 102 mm with a wall thickness of 3 mm and
1 mm, respectively, were used. The steel characteristics
were taken from the calculation example. The calcula-
tions results are shown in Table 1.

equation A, = 7238.2 mm?,
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Table 1 — The concrete strengthening coefficient values for tubular concrete elements
with different pipe wall thickness of the pipe

A wall thickness £ =3 mm A wall thickness =1 mm
No. Concrete
class Kes by Kes by kO —f 0 " kes by kes by kD _ @ o
(20) (22) kS (20) (22) kS
1 C12/15 3,198 4,139 22,73 1,379 1,586 13,05
2 C16/20 2,291 2,933 21,89 1,268 1,415 10,39
3 C20/25 1,916 2,389 19,80 1,208 1,321 8,55
4 C25/30 1,739 2,127 18,24 1,175 1,27 7,48
5 C30/35 1,617 1,943 16,78 1,151 1,233 6,65
6 C32/40 1,531 1,814 15,60 1,133 1,205 5,98
7 C35/45 1,453 1,695 14,28 1,116 1,179 5,34
8 C40/50 1,403 1,619 13,34 1,105 1,162 4,91
9 C45/55 1,365 1,561 12,56 1,096 1,148 4,53
10 | C50/60 1,328 1,504 11,70 1,087 1,134 4,14

As can be seen from table 1, if the concrete strength-
ening coefficient values deviation according to two dif-
ferent plasticity theories is analyzed, given as a percent-
age for each case of different pipe wall thickness, it can
be concluded that for samples with a wall thickness of
I mm in most cases it will be smaller than with a wall
thickness of 3 mm.

The calculated concrete strengthening coefficient val-
ues, which were obtained on the basis of Saint-Venant
and Huber-Mises-Genk plasticity theories, were com-
pared by plotting the concrete values strengthening co-
efficient dependence on the concrete class (Fig. 2).

—e—t=3 mm; by (20) —8—t=3 mm; by (22)

According to the same initial data for the same cases
of tubular concrete elements pipe wall thicknesses tak-
ing into account the obtained concrete strengthening
coefficient values, that were given in Table 1, then cal-
culate the bearing capacity value and enter the calcula-
tions results in Table 2. Also in this table the error value
of the concrete-filled steel tubular elements bearing ca-
pacity values, which were calculated on the basis of
Saint-Venant plasticity theories by expression (23) and
Huber-Mises-Genk expression (24), in percent to facil-
itate the results and clarity analysis.

—4—t=1 mm; by (20) —a—t=1 mm; by (22)

45
4 A\
35 \

=
AN

2,5

15 \ —u
\ ' 3 —
> . —— — — —
1 ¥ =
0,5
0
C12/15 C16/20 C20/25 C25/30 C30/35 C32/40 C35/45 C40/50 C45/55 C50/60
Figure 2 — Graphs of concrete strengthening coefficient values dependence
on a concrete class for pipes with the set parameters
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Table 2 — The bearing capacity values of the concrete-filled steel tubular elements

with different pipe wall thickness of the pipe

A wall thickness £ =3 mm A wall thickness = 1 mm
No. Concrete
class Nraby | Nraby Ne™ = No™ Nra by Nra by Ny =N ™,
@3), kN | @4, kN | — n.m | @3).KN | @4kN | T oy
1 C12/15 464,6 522,5 11,08 352,6 365,4 3,49
2 C16/20 458.,5 511,9 10,44 373,3 385,6 3,17
3 C20/25 468.,9 518,5 9,57 394,6 406,4 2,92
4 C25/30 481,8 529,5 9,02 4124 424,1 2,76
5 C30/35 496,0 542,0 8,49 430,3 441,8 2,62
6 C32/40 511,6 556,7 8,10 448,2 459,7 2,49
7 C35/45 530,7 574,5 7,62 469,7 481,1 2,37
8 C40/50 547,1 590,1 7,29 487,8 499,1 2,27
9 C45/55 564,2 606,8 7,01 505,8 517,1 2,18
10 C50/60 585,0 627,0 6,70 527,4 538,7 2,08

In general, the data in Table 2, firstly, is a clear proof
of the obtaining the elements bearing capacity value
possibility according to the above calculation method
and, secondly, demonstrate that the bearing capacity
values obtained from the same source data, i.e. calcu-
lated for one case, but given the different plasticity the-
ories application, do not differ significantly. Due to the
direct influence of the concrete strengthening coeffi-
cient value on the elements bearing capacity value,

based on this table, it is concluded that the obtained val-
ues discrepancy according to different plasticity theo-
ries decreases with decreasing wall thickness.

Graphs of the bearing capacity value dependence on
the prototype concrete class were compiled to better un-
derstand the calculations results. These graphs are
shown in Figure 3.
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C12/15 C16/20 C20/25 C25/30 €30/35 C32/40 €35/45 C40/50 C45/55 C€50/60
Figure 3 — Graphs of dependence of values of bearing capacity on a class of concrete
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Conclusions

Based on the Saint-Venant and Huber-Mises-Genk
plasticity theories application, analytical expressions
are obtained to calculate the concrete reinforcement co-
efficient of a tubular concrete element core in the limit
state and the strength equation of a tubular concrete el-
ement, which allows to use full strength. Calculations
were made according to the given expressions and com-
parison of the coefficient strengthening values, ob-
tained on the basis of the both presented plasticity the-
ories application. To determine the proposed method
accuracy, it is planned to compare the calculation re-
sults with experimental data.
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