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Abstract 
 

The forces scheme in the reinforced concrete elements inclined section is proposed under the transverse forces and bending moments 

joint action. The diagram shows the transverse and longitudinal forces perceived by the compressed concrete zone and longitudinal rein-

forcement, forces in the transverse reinforcement and engagement in an inclined crack. The truncated concrete wedge strength problem 

simulating a compressed zone over a dangerous inclined crack is solved on the plasticity theory basis. An engineering method for calcu-

lating the bending elements strength along an inclined crack is developed, which allows more fully to take into account the factors de-

termining the strength influence and to achieve a reduction in the structures material consumption. To simplify the calculation in tabular 

form, the projection inclined section functions are given for various loading schemes. 
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1. Introduction 

Beam reinforced concrete structures working on the transverse 

forces and bending moments perception are widely used in prac-

tice and largely determine the concrete and steel consumption 

during capital construction and reconstruction.  

The reinforced concrete elements calculation along an inclined 

cross sections is one of the important issues that require further 

study. In recent years significant progress has been made in this 

problem resolving and new directions have emerged [1 – 5]. How-

ever, the factors number influence on the bearing capacity is final-

ly undefined. In particular, there is no mechanism allowing to 

determine the filling of normal and tangential stresses diagrams 

over a dangerous inclined crack, analytical dependencies for de-

termine dangerous inclined crack projection on the element longi-

tudinal axis as a function of many variables have not been derived. 

There is also no common opinion on the "nagel effect" phenome-

non physical nature in the reinforcement intersected by an inclined 

crack and other factors number. Therefore, improving the method-

ology for calculating these elements strength is essential for the 

creation of effective structures, reducing their material consump-

tion, energy intensity and cost. 

The methods for calculating the elements along an inclined cross 

sections and the criteria for evaluating strength in their develop-

ment have undergone significant changes. So in the classical 

method, the calculation is made by the main tensile stresses on the 

strength of materials dependences basis. "Truss analogy" assumes 

the reinforcement tensile forces and the concrete compressive 

forces complete perception. In this case, the bending reinforce-

ment concrete element is represented in a truss form: parallel 

compressed and tensile chords and diagonals.  

The classical method and the "truss analogy" do not fully take into 

account the reinforced concrete beam elements behavior specifics 

in the failure zone and, as a result, lead to a discrepancy between 

the experimental and theoretical strength. In the transverse rein-

forcement absence, the required reliability is not provided, and, if 

present, the actual failure load magnitude exceeds the theoretical 

value. Calculation perfection by the "truss analogy" method is 

carried out by introducing various empirical coefficients and creat-

ing new analogies (arch, thrust system) [6, 7]. 

Also, the external forces and internal ultimate forces equilibrium 

for an element bearing part cut off by an inclined crack. The theo-

ry [8] allows more rational and economical transverse reinforce-

ment appointment. However, as ultimate efforts in the design 

model, only the forces in the concrete above the inclined crack and 

the force in the transverse reinforcement are taken into account. At 

the same time, according to experimental data, in the inclined 

section, the engagement forces in the crack, the nagel force in the 

longitudinal reinforcement and others factors also act, whose con-

tribution under bending is significant [9 − 11]. Bending moments 

and transverse forces equilibrium equations are considered sepa-

rately, that excludes the taking into account their mutual influence 

possibility.  

In [12], a method for calculating an inclined section strength was 

developed, based on the joint equilibrium equations and the condi-

tions for compressed concrete and tensile reinforcement defor-

mation use.  

The methods [9, 12, 13] consider the beam as a disk-link system 

consisting of rigid concrete disks (blocks) connected by compliant 

bonds according to the cracks and strain concentration zones ar-
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rangement. In addition to the forces in the connections in the disk-

link system there are the interaction forces between blocks that 

arise during the system deformation. The proposed disk design 

schemes disadvantage is the complexity and some inaccuracy in 

accounting for the compliant elements that are connecting blocks.  

Reinforced concrete elements disk kinematic models are presented 

in [10, 14, 15] and the connecting rods parameters are justified 

taking into account their work features depending on the longitu-

dinal and transverse reinforcement number. 

Broad prospects in the solution of the issue under consideration 

are represented by the concrete and reinforced concrete optimiza-

tion theory use [5] and discrete solutions [16]. 

It should be noted, that in experimental studies there are an in-

clined concrete element between adjacent cracks failure and a 

compressed zone over a dangerous inclined crack failure. It be-

comes necessary to determine these cases realization limits and 

the method use of "truss analogy" and the disk model. One of this 

problem solution main directions is the design schemes refinement 

and the factors determining the strength influence in inclined sec-

tions. 

2. Results analysis and discussion 

An important the reinforced concrete elements calculation devel-

opment aspect of along inclined cross sections at the destruction 

stage is the strength criterion application for concrete to evaluate 

the forces perceived by concrete over an inclined crack. 

There are two main options for applying this criterion for deter-

mining normal and tangential forces in concrete. One of them 

includes determining the forces in the ultimate stress diagrams 

area the vertical section passing through the inclined crack top. 

And the other one considers the loads determination in concrete 

through the modeling inclined prism work that is under uniaxial 

compression in the resultant normal and tangential forces action 

direction in the concrete above the inclined crack. The criterion 

for the prism failure is the achievement by the main compressive 

stresses of the concrete compression strength value. 

The plasticity theory on plastic bodies models [17, 18] and the 

failure mechanics, based on the brittle body model [19] are used to 

determine the ultimate load. For quasi-brittle materials, which 

include concrete, it is advisable to use the model that is more con-

sistent with the element experimental behavior the failure. Ac-

cording to the experimental studies data under compressive aver-

age stresses, the plasticity theory is more acceptable. It is success-

fully applied as an ultimate equilibrium method for calculating the 

statically indeterminate structures strength [20 − 22] and for de-

termining the massive elements ultimate load [10, 17, 21]. 

On the variational method basis, solutions were obtained for the 

concrete and reinforced concrete elements strength problem under 

shear and crushing [23 − 26], the results of which have found 

experimental confirmation [27, 28]. 

The purpose of this work is to improve the methodology for calcu-

lating the reinforced concrete elements strength along an inclined 

cross-section to the joint transverse forces and bending moments 

action using the concrete plasticity theory. 

To evaluate the beam element bearing capacity, the authors pro-

pose a design scheme, shown in Fig. 1. 

This task unknown to:  

H – load parameter (the concentrated F and uniformly distributed 

load q function);  

Vc and Nc – forcers perceived by a compressed concrete zone over 

a dangerous inclined crack;  

Vs and Ns – forcers in the longitudinal reinforcement at the point 

of its intersection by inclined crack;  

Fcrc – engagement force in an inclined crack;  

geometric characteristics: х – compressed zone height; lcrc – the 
inclined crack length; с – inclined section projection on the ele-

ment longitudinal axis; сo – inclined crack projection on the longi-

tudinal axis. 

To unknowns search for, equations are 

used: 0;X = 0;Y = 0;M = relation ( )c cV f N= – is ob-

tained from the strength problem solution of a compressed zone 

over an inclined crack; Vs, Fcrc – are determined by the studies 

analysis results; ( , );s s ctdV f c f=  ( );crc ctdF f f=  
о ( , , , , , );elm f s cc f с l d E E=  

o( , );x f c d= 0.
Н

с


=

  

 
Fig. 1: Forces scheme in the reinforced concrete element inclined section 

toward the longitudinal axis on the transverse force and bending moment 

action 
 

An element with length lelm is considered, within which the trans-

verse force and the bending moment do not change their sign.  

To determine the compressed zone strength over a dangerous in-

clined crack, a concrete wedge with a cut vertex, loaded with 

compressive and shearing forces is considered as model. The plas-

ticity theory mathematical apparatus and the characteristic lines 

method is used [17]. 

For heavy concrete, the Balandin-Geniev strength condition is 

taken, which is the rotation paraboloid in the principal stresses 

space σ1, σ2, σ3, and on the plane σ 1 and σ 2 it is the ellipse. This 

condition is simple and at the same time sufficiently is close to the 

experimental data. 

In an arbitrary orthogonal coordinate system xy that does not coin-

cide with the principal stress axes, the strength condition is written 

in the form  

 
2 2 3 ( )( ) 0.x x y y xy c ct x y c ctf f f f      − + + − − + − =               (1) 

 

In equation (1), there are three unknown quantities σx, σy, τxy for 

the determination of which additional conditions are necessary. 

They are the differential equilibrium equations for the plane prob-

lem. 
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(1) and (2) together represent a equations complete system that 

determine a plane stress state with given stresses at the body 

boundary. 

For the solving problems convenience, the stress state parameters 
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where θ is the angle between the X axis positive direction and the 

larger principal normal stress σ1 direction at the point considered. 

After the transformation, two quasilinear first-order partial differ-

ential equations system with respect to the unknowns t and θ is 

obtained: 
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where  ( )2 2

0

1
4 .

3
оt k T p T p= − − −  

 

On the hyperbolic ellipse part, that is, in the hyperbolic system 

case, the solution is reduced to constructing the characteristic lines 

fields [17]. 

Two differential equations systems are obtained that determine the 

two characteristic lines families fields z = const and u = const and 

the relation between the unknown functions t and θ on the last: 
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where γ is the angle value between characteristics and the greater 

principal normal stress direction at the point under consideration 
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The characteristic fields consist of the following areas: 

a) the simplest stress state fields are located at the free faces. In 

such areas, the characteristic lines grid is formed by parallel 

straight two families lines; 

b) centered characteristic fields formed by a radial lines ray and 

concentric curves; 

c) uniform stress state, under which the lines family consists of 

straight lines. 

The solutions were obtained using the arrangement of the plastici-

ty zones and the calculation apparatus proposed in [10] for wedges 

with uniformly compressive Nс distributed normal σn and tangent 

τn components. The strength condition (1) is interpreted in the first 

approximation as a condition of plasticity. 

The plasticity zones are located at the lateral face, formed by an 

inclined crack, and the wedge truncated face (Fig. 2).  

The characteristic fields are continuous. In the triangular region 

ABO, axial compression along free linear boundaries is realized. 

The OBC region is a centered characteristics field.  

The problem solution is to determine the ultimate load, the resultant 

forces Nc and Vc, and the plastic zones dimensions depending on 

the loading angle ψ, the wedge angle α, and the strength character-

istics fc, fct. Using the loading conditions for the wedge 

/с сtg V N =  and z = const, the functions t and ψ are obtained in 

the OCO' region, which then determine the limiting values σn , τn, 

Vc, Nc. 

 
Fig. 2: The plasticity regions location scheme for wedges 

 

The concrete wedge strength problem solution is also obtained 

using the virtual velocities principle [26, 29].  

The concrete wedges strength experimental study has been con-

ducted in Poltava national technical Yuriy Kondratyuk university 

[10, 30]. Load on the wedge top was transmitted through mutually 

perpendicular steel shoe plates (Fig. 3). One of them could be 

moved relatively to the other, so that the force N was applied in 

the wedge upper edge middle. The samples were tested with a 

wedge angle from 15 to 45° and loading angle from 0 to α+10° 

with gradation usually through 5о. The concrete class varied over a 

wide range. In the interval о      5 , = + significant concrete plastic 

deformations fixed by tensoresistors preceded the destruction. At 

small loading angles     / 2  , the wedges strength does not de-

pend on the angle α, for large ψ – it significantly changes. 

The plastic regions shape and dimensions observed in experiments 

with the wedges tip failure correspond to those adopted in the 

design scheme (Fig. 3). 

 
Fig. 3: Scheme for testing concrete wedges: 1 – loading device; 2 – testing 
sample 

 

To take into account the other strength determining factors influ-

ence, an experimental studies results analysis has been carried out 

[9, 10]. 

On the compressive zone strength problem analysis and solution 

results basis, an engineering method is given for calculating rein-

forced concrete elements along an inclined crack on the V and M 

joint action is proposed using the scheme given in Fig. 1. 

In the general case, they are given by an inclined sections series 

with different values с (Fig. 4).  

Strength testing is performed by condition 
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,( ) .c s sw ctH f bd  +                                                                   (8) 

 

Parameter Н is equal to ,H q kF= =  where k – coefficient that 

connects force effects: concentrated and uniformly distributed 

load. 

The parameter αc,s expresses the relative load perceived by the 

concrete and the element longitudinal reinforcement, and is equal 

to  
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2c – coefficient depending on the concrete type and class.  

1c , 
crc , st , 2c  are determined by the Table 1; 
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ос

d
 is determined by the formulas: 

- under the concentrated load action  

 

o 0,5
c c

n
d d

 
= + 

 
,                                                                     (14) 

 

- under the uniformly distributed load action 
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where s
f

A

bd
 = , n – coefficient that takes into account the 

concrete compressive force influence P in pre-stressed structures, 

and is equal 

 

( )1 /
n

ctd f s c

P

f bd E E
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+
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but no more than 5; f – coefficient that takes into account the 

flange work in the compressed zone;  1f = – for the element 

rectangular section,   /f effb b =  – for a T-section with a flange 

in a compressed zone, but no more than 3; 

 

1 0.5
z

d
 = = − ;                                                                     (18) 

 

2q c mt f f = + ,                                                                      (19) 

 

where qf  and mf  – inclined section projection functions on the 

longitudinal axis c , which for the loading main cases are given in 

Table 2. 

Parameter αsw expresses the relative load perceived by the stirrups 

clamps, is equal to 

 

o o
20.5

.
ywd sw c

sw

ctd

c c
f A

d d

f bst

 



 
+ 

 =                                             (20) 

 

The c value when the concentrated force F acts upon an element is 

taken equal to the distance from the "incoming" face (the "incom-

ing" is the face on which only the transverse force acts) to this 

force application point. 

The 
c

d
value while acting the uniformly distributed load q on the 

element is equal to 

 

o 0.25 0.5cltc c l
n

d d d
= + − .                                                          (21) 

 

 
Fig. 4: The calculated inclined sections location with the projections c1, ci, 

cn and cq on the element longitudinal axis in the loading general case by 

concentrated forces F1, F, Fn and a uniformly distributed load q 

 

Wherein: 

1 1 i i n nH qd k F k F k F= = = = ; 1
1, ,

q
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V V
f f

H H
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f f
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where Vq, V1, Vi, Vn, and Mq, M1, Mi, Mn – transverse forces and 

bending moments from an external load located on one side of the 

cross-section q - q, 1 - 1, i - i, n – n respectively. 

The clamps cross-section area in one plane is determined by the 

formula: 

 

,
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For elements reinforced with bends, formulas (20) and (22) are 

written in the form: 
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−
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,                                      (24) 
 

where: sin cosn tg  = + ; sin cosm tg  = − , where angles 

α and β – see Fig. 1. 

Table 1: Inclined section strength characteristic  

 
 

Characteristics 

designation 

Strength characteristics at  concrete class  

С12/15 С16/20 С20/25 С25/30 С30/35 С32/40 С35/45 С40/50 С45/55 С50/60 

1с  10 9.5 9 8.5 

2с  0.75 0.7 0.6 0.5 0.45 0,4 

crc  0.2 

st  11 10.5 10 9.5 9 8.5 

Table 2: The inclined section  projection functions  under various 
loading schemes 

Loading scheme 

and calculated elements 

Inclined section projection 

functions 

fq fm 
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b c

l d  
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a c

l d  
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 End of Table 2 
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Conclusions 

A methodology is proposed for calculating the beam reinforced 

concrete structures bearing capacity for the transverse forces and 

bending moments joint action.  

On the plasticity theory basis, the truncated concrete wedge 

strength problem solved as a compressed concrete zone model 

over a dangerous inclined crack. The dependence between the 

transverse and longitudinal forces on the face of wedge truncation 

is identified. Along with the forces perceived by the compressed 

zone and the transverse reinforcement, the engagement in the in-

clined crack and the longitudinal reinforcement work as nagel are 

taken into account. 
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