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Abstract 
 

Most of the reinforced concrete slab structures are statically indeterminate systems. In these systems, the redistribution of internal forces 

depends on the nature redistribution of rigidities between their separate elements. The presence of cracks significantly affects the change 

of elements rigidity of reinforced concrete structures. In the plate-ribbed systems, which include bridge structures, ribbed prefabricated 

and monolithic slabs, at the moment when normal cracks are wide enough, spatial torsion cracks may be absent. In this article the meth-

od of  analysis of the rigidity of reinforced concrete elements with normal cracks is presented. The method is based on approximate strip-

ing of cross section to separate lines. The method is approximate, but it is rather convenient, since it can be used as a subprogram for 

analysis of complex statically indeterminate reinforced concrete systems. The torsional rigidity of every rod of the system is determined 

in such a subprogram at  iterative analysis in  automatic mode. As a result of this analysis, the forces in the rods of statically indetermi-

nate system s are determined more accurately as the change of flexural as well as torsional rigidities caused by normal cracks formation 

were taken into account. The comparison of the results obtained by the torsional rigidity determination method with the results obtained 

by the numerical method confirmed the  developed methodology 

 
Keywords: normal crack; reinforced concrete ribbed slab; torsion; torsional rigidity 
 

 

1. Introduction 

The category of plate-ribbed systems includes bridge structures, 

monolithic and prefabricated ribbed overlaps. The normal cracks 

arise аt the edges of these structures cause of bending moments. It 

often happens that when a sufficiently wide disclosure normal of 

cracks, the spatial fracture from torsion are not available. At the 

same time, the load redistribution between contiguous ribs and 

between separate precast elements overlap depends not only on 

the bending, but also by torsional rigidity ribs [1]. 

Experimental research [2] shows that rigidity of  ribs prefabricated 

slabs on the torsion changes during crack formation. It should be 

noted that much theoretical and experimental work was devoted to 

the study of bending rigidity despite the great importance of bend-

ing as well as torsional rigidity in forces redistribution in statically 

indeterminate systems. These works include works [3, 4, 5, 6], and 

others. Torsional rigity study is limited to a small number of sci-

entific works. 

Existing methods of determination of torsional rigidity [7, 8] con-

cern only the reinforced concrete elements with spatial (spiral) 

cracks. The torque is applied to the part of the end surface of the 

rectangular element [9].The main objective in determining the 

torsional rigidity is calculating the displacements in the end of the 

rectangular element. If you use the "two-rod" model [9] may suf-

fer the accuracy of calculations. Therefore, the aim of this article 

is improvement the methods of determination the displacements of 

the reinforced concrete element of rectangular section with normal 

cracks. The end element is loaded with torque on the part of the 

section. 

2. Main part 

The analytical model is a reinforced concrete girder element of 

rectangular cross section. Element is divided into blocks with 

normal cracks, which arise from the action of bending moment. 

The torque is applied to the top part of the end surface of the gird-

er (zone compressed by bending). 

The results are used for numerical and analytical method of re-

search. We used differential equations and methods of differential 

and integral calculus.  

Consider a concrete element with normal cracks (fig. 1). 

 
Fig. 1: Scheme of reinforced concrete element with normal crack, which is 
loaded torque 
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Transfer of torque from А block to block В (fig. 1) occurs through 

the compressed zone of concrete. To determine the rigidity of the 

reinforced concrete element with normal cracks under the action 

of torque is required to determine the displacement the block A 

relative to block B.( fig. 2). 

 
Fig. 2: Displacement of block A relatively to block B, separated by a nor-

mal crack 

 

Application scheme of torque to the block B looks as shown in 

(fig. 3).  

Determination of the torsional rigidity of a reinforced concrete 

element with a normal (caused by bending) crack can be repre-

sented in the following sequence: 

1. To create a static definability, one should visualize the dissec-

tion of  the longitudinal reinforcement in the fracture. 

2. Determine the displacement of block A relatively to block B, sepa-

rated by a normal crack of one block relative to the other. In the 

compatibility conditions of deformations in the dissected rein-

forcement determine the nudge force Q in it (Figure 2). Taking 

into account the nagel force Q and the external torque Mt, we 

determine the real horizontal displacement in the fracture atot of 

one block relatively to the other (Figure 2). 

3. Determine the angle of rotation of the fictitious conditionally 

continuous element φekv as the ratio of the previously determined 

displacement atot (point 4) to the turning radius, (approximately 

half the height of the rod section). 

 4. Determine the torsional rigidity of the element with crack Bt 

according to the formula: 

ekv

t
t

lM
B




=

 

To determine the relative motion of blocks, it is necessary to de-

termine the stresses in the longitudinal sections of the element, to 

a part of the cross section   to which a torque is applied. Fig. 2:  

The task of the elasticity theory about torsion rod of rectangular 

cross section offers a solution based on these assumptions: 

- end of the rod is uniformly loaded by the tangential forces; 

- the resultant of these forces is the torque Mt; 

- according to the method of application torque on Fig. 3 (on a part 

of the section) stresses and displacements can not be defined by 

the formulas torsion. 

 
Fig. 3: Scheme of torque transmission through the compressed zone of 

concrete 

 

This task can be solved using the finite element method (FEM) 

using volumetric finite element (FE). There are difficulties in us-

ing these elements. Keep in mind that this problem is only part of 

the solution of the more general task of determining the torsional 

rigidity of reinforced concrete elements with cracks. 

To solve the problem we use the method [9]. The difference will 

be in the separation the rod into arbitrary number, instead of two. 

Let us first consider a rod, cut by a horizontal plane into two linear 

finite elements ‒ two beams I and II (fig.4). The length of the rod 

L is the length of the block bounded by cracks. 

The cutting plane lies the boundary between the elements I and II. 

In this case, the depth of a cross section of the upper rod is equal 

to the compressed (caused by bending) zone, and the depth of the 

element II is the height of the crack. In Fig. 4 consoles are shown 

conditionally. In fact, the ends of elements I and II are in the same 

vertical plane ХOZ. 

 
Fig. 4: Dissection scheme of a rod block into two rods. The block is 

bounded by cracks by both sides 
 

The forces S(x) act in the plane of dissection in the vertical plane 

(fig. 5) and tangents τ (x) – in the horizontal plane. The tangential 

forces are directed along the y-axis in Fig. 5. It should be noted 

that tangential forces directed along the x-axis will act in the plane 

of dissection, and in the approximate method they will be neglect-

ed because of their smallness. 

 
Fig. 5: Stresses acting in the plane of dissection of double-layer console 

rod. 

 

The block, separated by cracks, is represented in the form of a 

physical model (fig.5). It can be seen that the fibers of such a 

"model" subjected by torque, as shown in Fig. 5 are subjected to 

compression-expansion deformations in the vertical and horizontal 

directions. Volumetric diagrams of linear vertical (transverse) 

forces and shear forces acting in the horizontal plane of the rod 

dissection in Fig. 5 are shown in Fig. 6. 
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Fig. 6: Diagrams of tangential shear and transverse forces acting in the 
plane of the dissection of the rod 

 

 It is also true that that the dissection of a l – long block by parallel 

planes in XOY plane into the n-th number of layers (rod finite 

elements) gives greater accuracy of the calculation results. The 

more number of elements of dissection are calculated, the higher 

is the accuracy of determination of unknown forces and defor-

mations. 

Loading scheme of the block B (fig. 1) and its division into sepa-

rate lanes is as shown in Fig. 7.  

We spend n horizontal sections which are parallel to the plane 

OXY (fig. 7) and get n + 1 lanes (rods). 

 
Fig. 7: The scheme of dividing the block into individual strips (rods) 

 

Considering the symmetrical loading block of Fig. 7, the scheme 

of loading the i- rod, bearing in mind the analogy with [9] can be 

represented as shown in Fig. 8. 

 
Fig. 8: Scheme of the internal forces applied to the i-rod 

 

Unknown Si(x) and τi(x) is determined by the joint of deformations 

community in the i-section (similar to [9]). Typical strings of the 

system of equations to determine the unknown forces will look 

like: 
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System (1) shall be compiled for each «k» the seam (longitudinal 

section). 

Consequently, the number of equations is equal to 2n, where n is 

the number of sections (fig. 7). 

In the expression (1) is indicated: 

Ti=Ti(x) – the summary tangential forces which relate with the 

linear tangential forces τi(x) by the differential ratio: 

 

)()( xxT i

I

i =        (2) 

  

QSi=QSi(x) – the summary vertical forces which relate with the 

linear tangential forces Si(x) by the differential ratio: 

 

)()( xiSxI
iQS =   (3) 

  

ri – half the thickness of the i-th rod; 

b – width of the cross section of the rod (see fig. 3.); 

C=b/2 – rod turning radius (half the width of the section); 

GJi – torsional rigidity of i-th rod 

EF – rigidity of conditional rods of unit width, which simulate 

compression (stretching) the fiber of rods in the vertical direction 

[9]. 

The system of equations (1) can be conveniently solved by de-

composing the unknown members in the Fourier series by cosines: 
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where         
l

n=  . 

To solve a system of equations, external torque Mt also is decom-

posite in series by cosines: 
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, 
    (5) 

 

where Mt,n – the Fourier coefficient, which indicates the decompo-

sition of the external moment in the Fourier series. This Fourier 

coefficient is determined simply enough. The character of change 

of function of the external torque along the length of rod does not 

affect its definition. 

Then it is necessary differentiate, expanded, reduced to the 

Cos(α.x) all unknown and load terms in Fourier series. So, instead 

of differential equations get a system of linear algebraic equations. 

In the case of the same cross-section of all t rods (when the rod is 

divided into separate layers of equal thickness) will be: 
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          (6) 

 

where ri+1=ri=r; GJi=GJi+1=GJ. 

In the expression (6) through Ti and QSi are designated unknown 

expansion coefficients in the Fourier series of cosine (4), and 

through Mt,i – the Fourier coefficients in the expansion of external 

torque Mt  moments in the series (5). 

The system of equations (6) is solved m times, where m is the 

upper limit of the summation of series (4) and (5). Usually 7–9 

odd term numbers are enough to provide acceptable calculation 

accuracy. 

After determining forces Ti(x) and QSi(x) a rod is considered as 

loaded by external torque Mt,i(x) and the forces Ti-1(x), Ti(x);  

QSi-1(x), QSi(x), defined by solving the equations system  (fig. 8). 

If known the forces Ti(x) and QSi(x), it is easy to determine the 

upper part of the block movements relative to its lower part (fig. 

1). 

After determination of the unknown forces T(x) and S(x), we de-

termine the angle of rotation of the upper part of the block rela-

tively to its lower part. The rotation of the block to which the 

torque Mt is applied relatively to the adjacent block is resisted not 

only by the compressed zone (non-cracked section), but also by 

the reinforcement. Now we examine displacement  to Х axis of 

considering block relatively to adjacent one. 

 
Fig.9: Scheme of deformation of reinforcement and mutual rotation of 

blocks 
 

In Fig. 9 the following designations have been adopted: 

 - 2acrc – the width of the crack; 

 - Xsh – the displacement of the cutting point of the reinforcing bar 

by the shift of the latter (in general case caused by shear and bend-

ing, but considering the small value of acrc, the shear deformations 

mainly predominate); 

 - Xob – the displacement caused by the caving of concrete while 

considering the work of reinforcement in concrete as a rod on an 

elastic foundation, the role of which is performed by a concrete 

shell. 

After that the unknown transverse (nagel) force Q is determined in 

the armature of element like [9] and [2]. 

It is determined from the condition that the horizontal C and CI 

point’s displacements (fig. 9) are equal in a place of mental cutting 

an armature. 
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where we have marked: 

edshedob aa ,, ; – the displacements from the concrete crimping 

and armature shear from the unit force 1=Q  action; these dis-

placements are defined as the displacements of the rod, which is 

based on a continuous elastic base [9]; 
ver

Mta – the point С displacement  from the torsion of the upper 

part, i.e. of the compressed zone (fig. 9) by external torque Mt  

considering  the internal forces QSi(x) and Ti(x); 
ver

edQa ,  – the point С displacement  from the torsion of the upper 

part,  (fig.9) by external torque, generated by a unit force in the 

armature 1=Q ; 

nig

Mta  – the point C′ displacement, i.e. the lower part in Fig. 9, 

from the action of internal forces QSi(x)  and Ti(x), that arise as a 

result of  torsion by a external moment Mt; 
nig

edQa ,  – the point C′ displacement, i.e. the lower part in Fig. 7, 

from the action of internal forces QSi(x) and Ti(x), that arise as a 

result of torsion by a unit force 1=Q . 

 
Fig. 9: The scheme of the mutual rotation of two blocks, separated by 
crack 

 

The components of the displacement in the expression (7), are 

defined as in [2, 9] but with the changes, which connected with the 

definition of internal forces, made in this article. 

After calculating the unknown quantity Q you can determine the 

real displacement in the crack wtot. 

Order to determine torsional rigidity of the element with normal 

crack should identify the rotation angle of conventionally continu-

ous (without cracks) element: 

 

2/h

totw
ekv = .       (8) 

 

The ratio of the rotation angle of continuous element without 

cracks to an equivalent, which defined by (8), gives us the ratio of 

the continuous element rigidity to the rigidity of the element with 

normal crack.  

Use of a multilayer scheme (fig. 3) advantageously differs from a 

two-layer scheme [9], because accuracy of determining the forces 

grows just as in FEM with decreasing the finite element size is 

increased the accuracy of the result. 

Thus, for a beam with cross section b x h = 10 x 20 cm, with block 

length between cracks L = 20 cm and with depth of the com-

pressed zone 4 cm, the maximum forces value S (x)  in the end of 

the element (in the cross section with a crack) for the multilayer 

scheme (when the number of layers is equal to five) is constituted 

to 36,8 N/cm, and for the two-layer scheme – 28,3 N/cm. 

As you can see, the difference in values is a significant. Layers 

thickness (conditionally – dimensions of finite elements), which 

are needed to obtain an acceptable accuracy, can be determined by 

trial calculations. 

3. Conclusions  

A method for determining the internal forces in rod element was 

developed. Torque is applied to a portion of the cross section. The 
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calculation of these forces allows to determine the displacements 

in the cross section with normal to crack under torque action. 
This, in turn, allows to determine the torsional rigidity of rein-

forced concrete element with normal cracks. 

The perspective is the development of methodology for determin-

ing the rigidity characteristics of concrete elements of an arbitrary 

cross-section with normal cracks.  

In addition, it should develop a program on the computer for au-

tomatic calculation of displacements (and rigidity parameters) of 

elements with normal cracks. In the future, the program will be 

used as a subprogram in the calculation of bridges, slabs and other 

ribbed systems taking into account the spatial work. 

More accurately torsional rigidity of reinforced concrete elements 

with cracks can be defined, using the technique [10]. According to 

this method, it is proposed to calculate the mutual displacement of 

the normal crack faces basing on the data processing of plenty of 

numerical calculations using volumetric finite elements. 

However, this procedure is rather cumbersome and at present can 

not be used as a subprogram for analysis of complex statically 

indeterminate rod systems. 
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