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1. Introduction

A research of many physical processes requires constructing mathematical models in a form of differential 
equations or systems of differential equations, which are based on laws or properties inherent in this process. 
Mathematical models, which are used to describe physical processes, usually contain arbitrary functions. 
So, they form whole classes of differential equations or their systems. There is a question: how to choose 
from a set of logically acceptable models the ones, which are more suitable for describing a specific physical 
process than the others?

A long time ago, Jacobi has formulated conservation laws of classical mechanics on the basis of principles 
of symmetry [22]. Later, Klein has analyzed equations of general theory of relativity from the same point of 
view and emphasized an importance of the research of the group-theoretic nature of conservation laws for 
differential equations [25]. In 1918, combining formal methods of calculus of variations and the theory of Lie 
groups, E. Noether has formulated her theorem, according to which, the invariance of some properties of 
a system corresponds to a certain conservation law [39]. The presence of symmetry in a system determines 
the existence of a physical quantity, which doesn’t change, concerning this system. For differential equations, 
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symmetry can be regarded as a principle by which only those models, which have a wide symmetry, can 
be selected from a variety of acceptable models (equations, relations, etc.). In fact, all basic equations of 
mathematical physics (Newton’s, Laplace’s, d’Alembert’s, Schrödinger’s, Liouville’s, Dirac’s and Maxwell’s 
equations, etc.) are invariant under rather wide groups of transformations [13].

Thus, a selection from a particular class such systems, which have wide symmetry properties and, because 
of this, are more suitable for describing certain physical processes, is an actual problem.

We consider a system of reaction–convection–diffusion equations

U0 = ∂1
[
F (U)U1

]
+ G(U)U1 + H(U) (1)

where U =
(
u1

u2

)
, ua = ua(x), x = (x0, x1), F (U) = (fab(u)), G(U) = (gab(u)) – arbitrary functional matrices 

of the second order, H(U) = (ha(u)) – an arbitrary functional matrix of 2 × 1 order, a ∈ {1, 2}, subscripts 
mean partial derivatives. System (1) with certain nonlinearities F (U), G(U) and H(U) is applied for model-
ing of various processes of physics, chemistry, biology and ecology. Thus, modifications of system (1) are used 
for description of transfer processes in a body, such as modeling of an oxygen transportation in a circulatory 
system or modeling of a growth of thrombus in a wall flux. One of possible applications of system (1) in 
ecology is study of a spread of pollutants in the water. In biology, a system of reaction–diffusion–advection 
equations describes a model of a predator–prey community, a bacterial motion in colonies, influenced by 
various factors, etc. Hydrodynamic instability at the interface between two immiscible liquids is observed in 
such industries as oil refining, combustion processes, separation of ores, etc. A mathematical model of this 
phenomenon also involves a system of equations of reaction–convection–diffusion. A transition to a complex 
variable in system (1) allows obtaining models, which describe a motion of a quantum particle (Schrödinger
equation), a state of a superconductor in an external magnetic field (Ginzburg–Landau equation) and mag-
netohydrodynamic waves in plasma.

From the mathematical point of view, Eq. (1) describes not only one system, but a whole class of them. 
Because of this it is very important to select from this class exactly those systems, which can describe 
specific natural phenomena. A powerful method of choosing such systems is a method of symmetry. This 
method allows to select those systems, which have wide symmetry properties, satisfy a principle of relativity 
and can be used for description of physical processes.

It should be noted that symmetry properties of system (1) for different specific sets of matrices F (U), 
G(U) and H(U) have been studied by many authors. For instance, in paper [10] the Lie symmetry of 
a reaction–convection–diffusion equation has been researched. When G = 0, we obtain from system (1)
a system of reaction–diffusion equations, whose symmetry properties have also been a subject of many 
papers. Thus, in [4–7,33–38] significant results have been obtained for different kinds of constant matrices
of diffusion.

Introducing certain restrictions for matrices F and G = 0 we obtain a system of equations of chemotaxis, 
whose symmetry properties have been studied in publication [47]. Besides this, a convection–diffusion system 
can be obtained from system (1) (with H = 0). Works [8] and [9] are devoted to researching of Lie and 
Q-conditional symmetry of a two-dimensional system of this kind; in the case of a unit matrix F , the 
invariance of a three-dimensional system of convection–diffusion equations in regard to a generalized Galilean 
algebra has been studied in [46], in the case of arbitrary constant matrix F similar studies have been made 
for a two-dimensional system in [48].

2. Problem statement and definition

It is well known (e.g., see [12,27]), that a linear heat equation

u0 = u11
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is invariant under the following algebra of operators

∂0, ∂1, G = x0∂1 + x1Q0, Q0, (2)

D = 2x0∂0 + x1∂1 + Q2, (3)

Π = x2
0∂0 + x0x1∂1 + x0Q2 + x2

1
2 Q0 (4)

where Q0 = −Q2 = −1
2u∂u.

One more equation, which is invariant under a similar algebra, is Burgers’ equation

u0 + uu1 = u11

whose maximal algebra of invariance (e.g., see [24,45]) is the algebra with basic generators

∂0, ∂1, G = x0∂1 + Q1, (5)

D = 2x0∂0 + x1∂1 + Q2, (6)

Π = x2
0∂0 + x0x1∂1 + x0Q2 + x1Q1 (7)

where Q1 = ∂u, Q2 = −u∂u.
Since operators G, given by formula (2) or (5), generate the Galilean transformations

x′
0 = x0, x′

1 = x1 + θx0

of space (x0, x1) (e.g., see [17]), they are called the Galilean operators. Algebra (2) is called the Galilean 
algebra with mass operator Q0, and algebra (5) is known as the Galilean algebra without mass operator. 
Algebras (2)–(3) or (5)–(6) are called the extended Galilean algebras, and algebras of operators (2)–(4) or 
(5)–(7) are the generalized Galilean algebras.

In this paper we describe all the systems of class (1), which are invariant under the Galilean algebras 
(with and without mass operator), supplemented by operators of large-scale and projective transformations.

Operators of the algebra (5)–(7) satisfy the following commutation relations:

[∂1, G] = 0, (8)

[∂0, ∂1] = 0, [∂0, G] = ∂1, (9)

[∂0, D] = 2∂0, [∂1, D] = ∂1, [G,D] = −G, (10)

[∂0, Π] = D, [∂1, Π] = G, [G,Π] = 0, [D,Π] = 2Π. (11)

In this regard, a three-dimensional algebra 〈X1, X2, X3〉, whose operators satisfy commutation rela-
tions (8)–(9), is called the Galilean algebra without mass operator and marked as AG(1, 1); a four-
dimensional algebra 〈X1, X2, X3, X4〉, whose operators satisfy commutation relations (8)–(10), is called 
the extended Galilean algebra with mass operator and marked as AG1(1, 1); and a five-dimensional alge-
bra 〈X1, X2, X3, X4, X5〉, whose operators satisfy commutation relations (8)–(11), is called the generalized 
Galilean algebra without mass operator and marked as AG2(1, 1).

Operators of the algebra (2)–(4) satisfy commutation relations (9)–(11) and the following commutating 
relations:

[∂1, G] = Q0, [∂0, Q0] = 0, [∂1, Q0] = 0, [G,Q0] = 0, (12)

[D,Q0] = 0, (13)

[Π,Q0] = 0. (14)
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In this regard, a four-dimensional algebra 〈X1, X2, X3, X4〉, whose operators satisfy commutation re-
lations (9) and (12), is called the Galilean algebra with mass operator and marked AGM (1, 1); a five-
dimensional algebra 〈X1, X2, X3, X4, X5〉, whose operators satisfy commutation relations (9), (10) and 
(12), (13), is called the extended Galilean algebra with mass operator and marked as AGM

1 (1, 1); and 
a six-dimensional algebra 〈X1, X2, X3, X4, X5, X6〉, whose operators satisfy commutation relations (9)–(11)
and (12)–(14), is called the generalized Galilean algebra with mass operator and marked as AGM

2 (1, 1). The 
numbers in the brackets mean that the space of independent variables of the system of differential equations 
consists of two variables: one temporal x0 and one spatial x1.

3. The system of determining equations. Converting the equivalence of system (1)

Using the infinitesimal Lie method, we find a system of determining equations for nonlinearities F (U), 
G(U), H(U) and coordinates of the infinitesimal operator of the group of symmetry of system (1).

The following statement is true.

Lemma 1. The system (1) is invariant under the infinitesimal operator

X = ξμ(x, u)∂μ + ηa(x, u)∂ua (15)

if and only if functions ξμ, ηa, F , G and H satisfy the following system of determining equations

ξ0
1 = ξμua = 0, (16)

fdbηaucud + fdcηaubud = 0, (17)

ηcfab
uc +

(
ξ0
0 − 2ξ1

1
)
fab + ηcubf

ac − ηaucf cb = 0, (18)

ηcgabuc +
(
ξ0
0 − ξ1

1
)
gab + ηcubg

ac − ηaucgcb + ηc1
(
fab
uc + fac

ub

)
+ 2ηc1ubf

ac − ξ1
11f

ab + δabξ
1
0 = 0, (19)

ηcha
uc + ξ0

0h
a − ηauchc + ηb11f

ab + ηb1g
ab − ηa0 = 0 (20)

where fab, gab and ha are components of functional matrices, respectively F (U), G(U), H(U), a, b, c, d ∈
{1, 2}, μ ∈ {0, 1}, δab is the Kronecker symbol, and subscripts mean partial derivatives.

Lemma 1 is proved by S. Lie’s standard method (e.g., see [27,40,41]).

Definition 1. We call an algebra, for which the system is invariant with arbitrary nonlinearities F , G, H, 
the basic algebra of invariance of Eq. (1).

As a consequence of Lemma 1, the following statement is right.

Lemma 2. The basic algebra of invariance of system (1) is the algebra

Abas = 〈∂0, ∂1〉. (21)

Proof. If we split the system of determining equations (16)–(20) accordingly to arbitrary elements fab, gab, 
ha and their derivatives, we obtain

ξ0 = c0, ξ1 = c1, ηa = 0 (22)

where c0, c1 are arbitrary constants. Operator (15) with coordinates (22) generates algebra (21).
Lemma 2 is proved. �
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An important role in the group classification of a class of differential equations belongs to the equivalent 
transformation of that class.

Definition 2. Equivalent transformations are transformations of dependent and independent variables, which 
transform an arbitrary equation (or a system of equations) from any class of differential equations to 
a differential equation (a system of equations) of the same class.

Knowing equivalent transformations we can divide a class of differential equations into nonequivalent 
subclasses, find a canonical representative in every subclass, study its symmetry properties and, by means 
of these transformations, extend the obtained results to all equations of that subclass.

The following statement is true.

Lemma 3. The group of continuous transformations of equivalence for system (1) is the group

x′
0 = a0x0 + b0, x′

1 = a1x1 + gx0 + b1, (23)

ua ′ = αabu
b + βa (24)

where aμ, bμ, αab, βa, g are arbitrary constants.

The proof of Lemma 3 is carried out by the method described in the paper [1].
All further considerations are made to within equivalence transformations (23) and (24).

4. Representations of the Galilean algebras

4.1. Representations of the Galilean algebra AG(1, 1) and its extensions

We set the view of operators of Galilean algebras without mass operator, under which system (1) can 
be invariant. We clarify the general appearance of infinitesimal operator (15) for system (1), satisfying 
Eqs. (16), (17).

From system of equations (16) it implies that ξ0 = A(x0), ξ1 = B(x0, x1), where A(x0), B(x0, x1) are 
arbitrary smooth functions of their arguments. We consider system of equations (17) as a linear algebraic 
system with respect to unknown functions ηaubuc . The determinant of this system is Δ = 〈1〉 · 〈2〉 where the 
expressions

〈1〉 = f11 + f22, 〈2〉 =
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣
are the traces of matrix F = (fab) of the 1st and 2nd orders respectively.

Since at 〈2〉 = 0 system (1) describes processes associated with the behavior of a two-phase fluid, and at 
〈1〉 = 0 system (1) is an equation of the Schrödinger type for a complex function ψ = u1 + iu2, we assume 
that

Δ �= 0. (25)

Linear system (17) is homogeneous with respect to variables ηaubuc with condition (25) and has only the 
trivial solution

ηaubuc = 0. (26)
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The general solution of system (26) is ηa = αab(x0, x1)ub + βa(x0, x1) where αab(x0, x1), βa(x0, x1) are 
arbitrary smooth functions of their arguments.

Thus we have defined the following statement.

Theorem 1. If system (1) with condition (25) is invariant under the operator (15), then this operator has 
the form

X = A(x0)∂0 + B(x0, x1)∂1 +
[
αab(x0, x1)ub + βa(x0, x1)

]
∂ua (27)

where A, B, αab, βa are arbitrary smooth functions of their arguments.

Since system (1) with arbitrary nonlinearities F , G, H is invariant under algebra (21), we take operators 
X1 = ∂0, X2 = ∂1 as two operators of the Galilean algebra and, as Theorem 1 implies, we search for 
the third operator of this algebra in the form (27), where A(x0), B(x0, x1), αab(x0, x1) and βa(x0, x1) are 
unknown functions.

Using commutation relations (8)–(9), we get

Ȧ = B1 = 0, B0 = 1, αab
0 = αab

1 = βa
0 = βa

1 = 0. (28)

Solving Eqs. (28), we obtain that operator X3 is

X3 = c0∂0 + (x0 + c1)∂1 +
[
α1abu

b + β1a
]
∂ua

where c0, c1, α1ab, β1a are constants of integration. So, considering G = X3 − c0∂0 − c1∂1, we get the 
realization of algebra (8)–(9) for system (1):

AG(1, 1) = 〈∂0, ∂1, G = x0∂1 + Q1〉, (29)

where Q1 = (α1abu
b + β1a)∂ua .

In paper [42], to within all possible local transformations, non-equivalent realizations of algebras of 
1–4 orders were determined. Among the algebras presented in this paper was algebra (29), but provided 
that Q1 = ∂u1 . Since system (1) does not allow all the possible equivalence transformations, but only 
transformations in the form (23), (24), the class of operators for it is wider.

Similarly, using commutation relations (8)–(11), we conclude that the basic generators of the extended 
and generalized Galilean algebras without mass operator, under which system (1) can be invariant, are

AG1(1, 1) = 〈∂0, ∂1, G = x0∂1 + Q1, D = 2x0∂0 + x1∂1 + Q2〉, (30)

AG2(1, 1) =
〈
∂0, ∂1, G = x0∂1 + Q1, D = 2x0∂0 + x1∂1 + Q2,

Π = x2
0∂0 + x0x1∂1 + x1Q1 + x0Q2 + Q3

〉
(31)

where

Ql =
(
αlabu

b + βla

)
∂ua , αlab, βla – const, l = 1, 3, (32)

and operators Ql should satisfy the following conditions

[Q1, Q2] = −Q1, [Q1, Q3] = 0, [Q2, Q3] = 2Q3. (33)
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Table 1
Non-equivalent representations of the extended Galilean algebra 
without mass operator.

Q1 Q2

1. ∂u1 −u1∂u1 + ku2∂u2

2. ∂u1 −I + u2∂u1

3. ∂u1 −u1∂u1 + ∂u2

4. ∂u1 + u1∂u2 −I − u2∂u2

5. u1∂u2 kI + u1∂u1

6. u1∂u2 u1∂u1 + ∂u2

Table 2
Non-equivalent representations of the generalized Galilean algebra without mass operator.

Q1 Q2 Q3

1. ∂u1 −u1∂u1 + ku2∂u2 0
2. ∂u1 −u1∂u1 + u2∂u2 u2∂u1

3. ∂u1 −I + u2∂u1 0
4. ∂u1 −u1∂u1 + ∂u2 0
5. ∂u1 + τu1∂u2 −I − u2∂u2 p∂u2

6. u1∂u2 −I − u2∂u2 ∂u2

7. u1∂u2 kI + u1∂u1 0
8. u1∂u2 u1∂u1 + ∂u2 0

4.2. Classification of the representations of the Galilean algebra AG(1, 1) and its extensions

In [18] the representations of the Galilean algebra without mass operator are classified, and it is found 
that there are 5 different representations of this algebra, which are non-equivalent with respect to trans-
formations (24). In fact, as it can be seen from formula (29), these are unequal representations of the 
operator Q1, which we give below, taking into account also transformations (23):

Q1 = ∂u1 + τu1∂u2 , Q1 = ∂u1 + u2∂u2 , Q1 = τI + u1∂u2 ,

Q1 = I + ku2∂u2 , Q1 = kI + J (34)

where τ ∈ {0, 1}, k ∈ R, I = u1∂u1 + u2∂u2 , J = u1∂u2 − u2∂u1 .
Thus, the only possible realization of the algebra AG(1, 1) for system (1) is algebra (29), where opera-

tor Q1 has the form of one of those five cases presented in formulas (34).
In paper [48] representations of the extended and generalized Galilean algebras without mass operator 

are classified. In fact, these are non-equivalent sets of operators Q1, Q2 for the extended Galilean algebra 
and operators Q1, Q2, Q3 for the generalized Galilean algebra. In [48] these operators are given to within 
transformations (24). Since the system (1), besides transformations (24), allows also equivalence transfor-
mations (23), so we specify the form of operators Ql. The results of this specification are represented in 
Tables 1–2.

Therefore, the only possible realization of the algebra AG1(1, 1) for system (1) is algebra (30), where 
operators Q1, Q2 have one of the six forms shown in Table 1.

The only possible realization of the algebra AG2(1, 1) for system (1) is algebra (31), where operators Q1, 
Q2, Q3 have one of the eight forms shown in Table 2.

In Table 2 (τ, p)∈{(0, 1), (1, k)}.

4.3. Representations of the Galilean algebra AGM (1, 1) and its extensions

We call the Galilean algebra with mass operator as one of the realizations of a four-dimensional linear 
algebra of differential operators of the first order, for which commutation relations (9) and (12) are fulfilled.
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Table 3
Non-equivalent representations of the Galilean algebra with mass operator.

Q0 Q1

1. ∂u1 τ1∂u2 + τ2u
2∂u1

2. r1∂u1 + r2u
2∂u2 l1∂u1 + l2u

2∂u2

3. τ1∂u1 + u1∂u2 τ2∂u2

4. s1u
1∂u1 + s2u

2∂u2 p1u
1∂u1 + p2u

2∂u2

5. r1I + r2u
2∂u1 l1I + l2u

2∂u1

6. k1I + k2J p1I + p2J

Using commutation relations (9) and (12) and taking into account results of Theorem 1 we get that 
algebra AGM (1, 1) has the realization

AGM (1, 1) = 〈∂0, ∂1, G = x0∂1 + x1Q0 + Q1, Q0〉 (35)

where operators Q0, Q1 are set by formulas (32) and satisfy condition [Q0, Q1] = 0.
As we stated above, in [42] non-equivalent realizations of algebras of the 1–4 orders are specified to within 

all possible local transformations. Since system (1) does not allow all possible equivalence transformation, 
but only transformation in the form (23) and (24), the class of operators Q0, Q1 for it is much wider. 
Therefore, among the algebras given in [42], algebra (35) is present, but only at Q0 = ∂u1 , Q1 = ∂u2 .

Thus, the only possible realization of the algebra AGM (1, 1) for system (1) is algebra (35). Similarly, 
using commutation relations (9)–(11) and (12)–(14), we conclude that the basic generators of the extended 
and generalized Galilean algebras with mass operator, for which system (1) can be invariant, are

AGM
1 (1, 1) = 〈∂0, ∂1, G = x0∂1+x1Q0+Q1, Q0, D = 2x0∂0+x1∂1+Q2〉, (36)

AGM
2 (1, 1) =

〈
∂0, ∂1, G = x0∂1+x1Q0+Q1, Q0, D = 2x0∂0+x1∂1+Q2,

Π = x2
0∂0 + x0x1∂1 + x0Q2 + x1Q1 + x2

1
2 Q0 + Q3

〉
(37)

where Qν = (ανabu
b + βνa)∂ua , ανab, βνa are constants, ν = 0, 3, and operators Qν must satisfy conditions 

(33) and the following commutation relations: [Q0, Ql] = 0.

4.4. Classification of the representations of the Galilean algebra AGM (1, 1) and its extensions

The classification of the representations of the Galilean algebra with mass operator, and the extended 
and generalized Galilean algebra with mass operator is made in paper [48], but this classification, as we 
have noted above, was made only to within equivalence transformations (24). Therefore, we specify rep-
resentations of operators Qν by using transformations (23). Furthermore, considering the fact that Q0 is 
a part of AGM (1, 1), AGM

1 (1, 1) and AGM
2 (1, 1), we used it to reduce the representations of operators Ql, 

taking a linear combination of operator Q0 with appropriate operators of these algebras. The results of the 
reduction are given in Tables 3, 4 and 5. Thus, non-equivalent sets of operators Q0, Q1, which are possible 
to within equivalence transformations (23), (24), are represented in Table 3.

In Table 3 (r1, r2)∈{(0, 1), (1, 0), (1, 1)}, and

at (r1, r2) = (0, 1), (l1, l2) = (1, 0),
at (r1, r2) = (1, 0), (l1, l2) = (0, 1),
at (r1, r2) = (1, 1), (l1, l2) ∈ {(0, 0), (0, 1)};

(s1, s2) ∈ {(1, s), (0, 1)}, and
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Table 4
Non-equivalent representations of the extended Galilean algebra with mass operator.

Q0 Q1 Q2

1. ∂u1 0 τ1∂u2 + τ2u
2∂u1

2. ∂u1 τu2∂u1 qu2∂u2 + k3∂u1

3. ∂u1 ∂u2 k3∂u1 − u2∂u2

4. τ∂u1 + u2∂u2 0 p∂u1 + k3u
2∂u2

5. u2∂u2 ∂u1 k3u
2∂u2 − u1∂u1

6. τ∂u1 + u1∂u2 0 p∂u2 + k3(τ∂u1 + u1∂u2 )
7. u1∂u2 ∂u2 −I

8. s1u
1∂u1 + s2u

2∂u2 0 m1u
1∂u1 + m2u

2∂u2

9. τI + pu2∂u1 0 n1I + n2u
2∂u1

10. I u2∂u1 u2∂u2 + k3I

11. τI + pJ 0 m1I + m2J

at (s1, s2) = (1, s), (p1, p2) ∈ {(0, 0), (0, 1)},
at (s1, s2) = (0, 1), (p1, p2) ∈ {(0, 0), (1, 0)};

(k1, k2) ∈ {(1, k), (0, 1)}, and

at (k1, k2) = (1, k), (p1, p2) ∈ {(0, 0), (0, 1)},
at (k1, k2) = (0, 1), (p1, p2) ∈ {(0, 0), (1, 0)},

k, k3, s ∈ R, and s �= 0, k2
2 + p2

2 �= 0;
Thus, to within equivalence transformations (23) and (24) the only possible realization of the Galilean 

algebra with mass operator for system (1) is algebra (35), where operators Q0, Q1 have one of the six forms 
shown in Table 3.

Similarly, to within equivalence transformations (23) and (24), for system (1) the only possible realization 
of the extended Galilean algebra with mass operator is algebra (36), where operators Q0, Q1, Q2 have one 
of the forms given in Table 4.

In Table 4 (τ, q) ∈ {(0, s), (1, 1)}, (τ, p) ∈ {(1, k), (0, 1)}, and

if (τ, p) = (1, k), then (n1, n2) = (0, 1), (m1, m2) = {(0, m)},
if (τ, p) = (0, 1), then (n1, n2) = (m, 0), (m1, m2) = {(m, 0)};

(s1, s2) ∈ {(1, s), (0, 1)}, and

at (s1, s2) = (1, s), (m1, m2) = {(0, m)},
at (s1, s2) = (0, 1), (m1, m2) = {(m, 0)};

m ∈ R.
All the possible sets of operators Q0, Q1, Q2, Q3 for algebra (37), which are non-equivalent under 

equivalence transformations (23), (24), are represented in Table 5.
Thus, to within equivalence transformations (23) and (24) the only possible realization of the generalized 

Galilean algebra with mass operator for system (1) is algebra (37), where operators Q0, Q1, Q2, Q3 have 
one of the forms shown in Table 5.

5. Invariance of system (1) under the Galilean algebras

5.1. Invariance of system (1) under the Galilean algebra without mass operator

We study with what nonlinearities F , G and H, system (1) is invariant under the Galilean algebra 
AG(1, 1).
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Table 5
Non-equivalent representations of the generalized Galilean algebra with mass operator.

Q0 Q1 Q2 Q3

1. ∂u1 0 τ1∂u2 + τ2u
2∂u1 0

2. ∂u1 0 k3∂u1 − 2u2∂u2 τ∂u2

3. ∂u1 0 k3∂u1 + 2u2∂u2 τu2∂u1

4. ∂u1 τu2∂u1 k3∂u1 + u2∂u2 0
5. ∂u1 τ∂u2 k3∂u1 − u2∂u2 0
6. τ∂u1 + u2∂u2 0 k3u

2∂u2 + p∂u1 0
7. u2∂u2 0 k3u

2∂u2 − 2u1∂u1 τ∂u1

8. τ∂u1 + u1∂u2 0 k3(τ∂u1 + u1∂u2 ) + p∂u2 0
9. u1∂u2 0 k3u

1∂u2 − 2I τ∂u2

10. u1∂u2 ∂u2 −I 0
11. s1u

1∂u1 + s2u
2∂u2 0 m1u

1∂u1 + m2u
2∂u2 0

12. u2∂u2 τ∂u1 k3u
2∂u2 − u1∂u1 0

13. I u2∂u1 k3I + u2∂u2 0
14. I 0 k3I − 2u2∂u2 τu1∂u2

15. I 0 k3I + 2u2∂u2 τu2∂u1

16. τI + pu2∂u1 0 n1I + n2u
2∂u1 0

17. τI + pJ 0 m1I + m2J 0

The following statement is true.

Theorem 2. System (1) is invariant under Galilean algebra (29) if and only if nonlinearities F (U), G(U)
and H(U), to within equivalence transformations (23) and (24), are

1. F (U) = D
(
u1, ϕ

)
=

(
ϕ11−ϕ12τu1 ϕ12

ϕ21+(ϕ11−ϕ22)τu1−ϕ12(τu1)2 ϕ22+ϕ12τu1

)
,

G(U) = D
(
u1, ψ

)
− u1E, H(U) =

(
χ1

χ2 + χ1τu1

)
, ω = u2 − τ

(u1)2

2 ,

if Q1 = ∂u1 + τu1∂u2 ;

2. F (U) = D
(
u2, ϕ

)
=

(
ϕ11 ϕ12

u2

ϕ21u2 ϕ22

)
,

G(U) = D
(
u2, ψ

)
− u1E, H(U) =

(
χ1

χ2u2

)
, ω = u2e−u1

,

if Q1 = ∂u1 + u2∂u2 ;

3. F (U) = D

(
u2

u1 , ϕ

)
=

(
ϕ11 − ϕ12 u2

u1 ϕ12

ϕ21 + (ϕ11 − ϕ22)u
2

u1 − ϕ12(u
2

u1 )2 ϕ22 + ϕ12 u2

u1

)
,

G(U) = D

(
u2

u1 , ψ

)
− u2

u1E, H(U) =
(

χ1u1

χ1u2 + χ2u1

)
, ω = u1e−τ u2

u1 ,

if Q1 = τI + u1∂u2 ;

4. F (U) = D

(
u2

u1 , ϕ

)
=

(
ϕ11 ϕ12 u1

u2

ϕ21 u2

u1 ϕ22

)
,

G(U) = D

(
u2

u1 , ψ

)
− ln u1E, H(U) =

(
χ1u1

χ2u2

)
, ω = (u1)k+1

u2 ,

if Q1 = I + ku2∂u2 ;
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5. F (U) = D
(
u1, u2, ϕ

)
=

(
ϕ3 − 2u1

�u2 εabϕ
aub −ϕ4 − 2u2

�u2 εabϕ
aub

ϕ4 − 2u1

�u2 δabϕ
aub ϕ3 − 2u2

�u2 δabϕ
aub

)
,

G(U) = D
(
u1, u2, ψ

)
− arctan u1

u2E, H(U) =
(

δabχ
aub

−εabχ
aub

)
, ω = �u2e2k arctan u1

u2 ,

if Q1 = kI + J ,

where �u = (u1, u2), ϕab = ϕab(ω), ψab = ψab(ω), χa = χa(ω), ϕi = ϕi(ω), ψi = ψi(ω) are arbitrary smooth 
functions of argument ω, view of which is given in every item, E is a 2 × 2 unit matrix, ε = (εab) =

( 0 −1
1 0

)
and i = 1, 4.

Proof. We find functional matrices F (U), G(U) and H(U), at which system (1) is invariant under Galilean 
algebra (29). For this we have to substitute corresponding functions ξμ and ηa, which were obtained from 
the representations of the operators of algebra (29), into system of determining equations (16)–(20) from 
Lemma 1 and solve it for each realization in (34). Since formula (27) specifies the form of infinitesimal oper-
ator (15), satisfying Eqs. (16) and (17) of the determining system, we substitute corresponding functions ξμ
and ηa already only into Eqs. (18)–(20) of the determining system.

We illustrate the proof of this theorem by the example of the first realization in (34). It determines the 
basic operators of the Galilean algebra

∂0, ∂1, G = x0∂1 + ∂u1 + τu1∂u2 (38)

and the coordinates of operator X:

ξ0 = d0, ξ1 = gx0 + d1, η1 = g, η2 = gτu1 (39)

where g, dμ are arbitrary constants. Substituting (39) into system (18)–(20) we see that it is reduced to the 
following system for finding functions fab, gab and ha and for specifying the coordinates of the infinitesimal 
operator:

(
δc1 + δc2τu

1)fab
uc + τ

(
δb1f

a2 − δa2f
1b) = 0, (40)(

δc1 + δc2τu
1)gabuc + τ

(
δb1g

a2 − δa2g
1b) + δab = 0, (41)(

δc1 + δc2τu
1)ha

uc − δa2τh
1 = 0. (42)

The general solution of system (40)–(42) is:

f11 = ϕ11−ϕ12τu1, f12 = ϕ12,

f21 = ϕ21+
(
ϕ11−ϕ22)τu1−ϕ12(τu1)2, f22 = ϕ22+ϕ12τu1;

g11 = ψ11−
(
1 + τψ12)u1, g12 = ψ12,

g21 = ψ21+
(
ψ11−ψ22)τu1−ψ12(τu1)2, g22 = ψ22−

(
1 − τψ12)u1;

h1 = χ1, h2 = χ2 + χ1τu1,

under which system (1) is invariant under the Galilean algebra without mass operator. Here, ϕab = ϕab(ω), 
ψab = ψab(ω) and χa = χa(ω) are arbitrary smooth functions and ω = u2 − τ (u1)2

2 , that coincides with the 
first item of Theorem 2.

Solving in the similar way system of the determining equations for the other representations of the 
Galilean algebra without mass operator (34), we obtain the rest of the items of Theorem 2.

The theorem is proved. �
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5.2. Invariance of system (1) under the extended Galilean algebra without mass operator

We study at what nonlinearities F , G and H system (1) is invariant under the algebra AG1(1, 1).
The following statement is true.

Theorem 3. System (1) is invariant under extended Galilean algebra (30) if and only if nonlinearities F , G
and H, to within equivalence transformations (23) and (24), have the form

1. F (U) = D
(
u2, λ

)
=

(
λ11 λ12(u2)m−1

λ21(u2)1−m λ22

)
,

G(U) = D
(
u2, μ

)(
u2)m − u1E, H(U) =

(
ν1(u2)3m

ν2(u2)2m+1

)

when Q1 = ∂u1 , Q2 = −u1∂u1 − 1
mu2∂u2 ;

2. F (U) =
(
ϕ1(u2) 0

0 ϕ2(u2)

)
, G(U) =

(
0 0

ψ(u2) 0

)
− u1E, H(U) =

(
0
0

)

when Q1 = ∂u1 , Q2 = −u1∂u1 ;

3. F (U) = D
(
u2, λ

)
=

(
λ11 − λ21 ln u2 λ12 + (λ11 − λ22) ln u2 − λ21 ln2 u2

λ21 λ22 + λ21 ln u2

)
,

G(U) = D
(
u2, μ

)
u2 −

(
u1 + u2 ln u2)E, H(U) =

(
ν1 − ν2 ln u2

ν2

)(
u2)3

when Q1 = ∂u1 , Q2 = −I + u2∂u1 ;

4. F (U) = D
(
u2, λ

)
=

(
λ11 λ12e

−u2

λ21e
u2

λ22

)
,

G(U) = D
(
u2, μ

)
e−u2 − u1E, H(U) =

(
ν1e

−3u2

ν2e
−2u2

)

when Q1 = ∂u1 , Q2 = −u1∂u1 + ∂u2 ;

5. F (U) = D
(
u1, ω, λ

)
=

(
λ11−λ12

u1
√
ω

λ12√
ω

λ21
√
ω+(λ11−λ22)u1−λ12

(u1)2√
ω

λ22+λ12
u1
√
ω

)
,

G(U) = D
(
u1, ω, μ

)√
ω − u1E, H(U) =

(
ν1

ν1u
1 + ν2

√
ω

)
ω

3
2 ,

ω = u2 − (u1)2
2 , when Q1 = ∂u1 + u1∂u2 , Q2 = −I − u2∂u2 ;

6. F (U) = D
(
u1, u2, λ

)
=

(
λ11−λ12

u2

(u1)m+1 λ12(u1)−m

λ21(u1)m+(λ11−λ22)u
2

u1−λ12
(u2)2

(u1)m+2 λ22+λ12
u2

(u1)m+1

)
,

G(U) = D
(
u1, u2, μ

)(
u1)m − u2

u1E, H(U) =
(

ν1u
1

ν2(u1)m+1 + ν1u
2

)(
u1)2m

when Q1 = u1∂u2 , Q2 = u1∂u1 − m+1
m I;

7. F (U) =
(

ϕ1(u1) 0
1 1 2 1 u2 2 1

)
,

(ϕ (u ) − ϕ (u ))u1 ϕ (u )
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G(U) =
( −1 u1

u2

−u2

u1 1

)
u2

u1ψ
(
u1)− u2

u1E, H(U) =
(

0
0

)

when Q1 = u1∂u2 , Q2 = −u2∂u2 ;

8. F (U) = D
(
u1, u2, λ

)
=

(
λ11 − λ12(u2 − ln u1) λ12u

1

λ21+(λ11−λ22)(u2−ln u1)−λ12(u2−ln u1)2
u1 λ22 + λ12(u2 − ln u1)

)
,

G(U) = D
(
u1, u2, μ

) 1
u1 − u2 − ln u1

u1 E, H(U) =
(

ν1u
1

ν2 + ν1(u2 − ln u1)

)(
u1)−2

when Q1 = u1∂u2 , Q2 = u1∂u1 + ∂u2 ,

where ϕa and ψ are arbitrary smooth functions of their arguments and λab, μab, νa and m are arbitrary 
constants.

Proof. We find functional matrices F (U), G(U) and H(U), at which ones system (1) is invariant under 
extended Galilean algebra (30). To do this, we use the classification of representations of algebra (30) shown 
in Table 1.

Since Eqs. (16)–(17) of the determining system have been solved (see Theorem 1), so, for finding functions 
fab(u), gab(u) and ha(u), at which ones the system of equations (1) is invariant under the extended Galilean 
algebra without mass operator, we substitute corresponding functions ξμ and ηa, which were got from the 
representations of operators of algebra (30) into Eqs. (18)–(20) of the determining system and solve them 
for each item of Table 1.

We illustrate the proof of this theorem by the example of a realization of the extended Galilean algebra, 
which was obtained in the first item of Table 1. The realization of operators Q1 and Q2, which are written 
down in that item, defines the basic operators of the extended Galilean algebra

∂0, ∂1, G = x0∂1 + ∂u1 , D = 2x0∂0 + x1∂1 − u1∂u1 + ku2∂u2 (43)

and the coordinates of operator X:

ξ0 = 2cx0 + d0, ξ1 = cx1 + gx0 + d1, η1 = −cu1 + g, η2 = cku2 (44)

where c, g and dμ are arbitrary parameters.
Substituting (44) into determining system (18)–(20) and taking into account formulas (40)–(42) for τ = 0, 

we see that it is reduced to the following system for finding functional matrices F (U), G(U), H(U):

−u1fab
u1+ku2fab

u2+δa1f
1b−δb1f

a1+k
(
δb2f

a2−δa2f
2b) = 0, (45)

−u1gabu1+ku2gabu2+δa1g
1b−δb1g

a1+k
(
δb2g

a2−δa2g
2b)+gab = 0, (46)

−u1ha
u1+ku2ha

u2+δa1h
1−δa2kh

2+2ha = 0. (47)

It is evident that algebra (43) is obtained by adding a dilatation operator D to algebra (38) at τ = 0. 
Since the nonlinearities, at which system (1) is invariant under the Galilean algebra without mass operator 
for Q1 = ∂u1 , have been found in Theorem 2, we use them to solve system (45)–(47). We substitute the 
meaning of the nonlinearities from the first item of Theorem 2 at τ = 0:

F =
(
ϕ11 ϕ12

21 22

)
, G =

(
ψ11 ψ12

21 22

)
− u1E, H =

(
χ1

2

)
, ω = u2
ϕ ϕ ψ ψ χ
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into system (45)–(47) and solve it. The solution of the obtained system obviously depends on the meanings 
of constant k. Thus, at k �= 0 the general solution of system (45)–(47) is

f11 = λ11, f12 = λ12
(
u2)− 1

k−1
,

f21 = λ21
(
u2) 1

k+1
, f22 = λ22;

g11 = μ11
(
u2)− 1

k − u1, g12 = μ12
(
u2)− 2

k−1
,

g21 = μ21u
2, g22 = μ22

(
u2)− 1

k − u1;

h1 = ν1
(
u2)− 3

k , h2 = ν2
(
u2)− 2

k+1 (48)

where λab, μab, νa are arbitrary constants.
Thus, with nonlinearities (48) the system (1) is invariant under the extended Galilean algebra. Substi-

tuting − 1
k = m into the obtained functions, we proceed to the nonlinearities described in the first item of 

Theorem 3.
At k = 0, system (45)–(47) is satisfied for the functions

F (U) =
(
ϕ1 0
0 ϕ2

)
, G(U) =

(
−u1 0
ψ −u1

)
, H(U) =

(
0
0

)
(49)

where ϕa = ϕa(u2) and ψ = ψ(u2) are arbitrary functions, which correspond to the second item of Theo-
rem 3.

Similarly, solving the system of the determining equations for all the presentations of algebra (30) from 
Table 2, we obtain the rest of the items of Theorem 3.

The theorem is proved. �
5.3. Invariance of system (1) under the generalized Galilean algebra without mass operator

We research which meanings of functional matrices F , G and H allow system (1) to be invariant under 
the algebra AG2(1, 1).

The following statement is true.

Theorem 4. System (1) is invariant under generalized Galilean algebra (31) if and only if nonlinearities F , G
and H, to within equivalence transformations (23) and (24), have the form

1. F (U) =
(
λ11 λ12(u2)m−1

0 λ22

)
,

G(U) =
( 0 μ12(u2)2m−1

−u2

m μ22(u2)m

)
− u1E, H(U) =

(
ν1(u2)3m

ν2(u2)2m+1

)
,

if Q1 = ∂u1 , Q2 = −u1∂u1 − 1
mu2∂u2 , Q3 = 0, m �= 0, 1;

2. F (U) =
(
λ11 λ12
λ21 λ22

)
, G(U) =

(
0 μ12
−1 μ22

)
u2 − u1E, H(U) =

(
ν1
ν2

)(
u2)3,

if Q1 = ∂u1 , Q2 = −I, Q3 = 0;

3. F (U) =
(
λ 0
0 ϕ

)
, G(U) = −u1E, H(U) =

(
0
0

)
,

if Q1 = ∂u1 , Q2 = −u1∂u1 , Q3 = 0;
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4. F (U) =
(
λ11 λ12 + (λ11 − λ22) ln u2

0 λ22

)
,

G(U) =
(

1 μ12 + (1 − μ22) ln u2 + ln2 u2

−1 μ22 − 2 ln u2

)
u2 − u1E, H(U) =

(
ν1 − ν2 ln u2

ν2

)(
u2)3,

if Q1 = ∂u1 , Q2 = −I + u2∂u1 , Q3 = 0;

5. F (U) =
(
λ11 λ12e

−u2

0 λ22

)
, G(U) =

(
0 μ12e

−2u2

1 μ22e
−u2

)
− u1E, H(U) =

(
ν1e

−3u2

ν2e
−2u2

)
,

if Q1 = ∂u1 , Q2 = −u1∂u1 + ∂u2 , Q3 = 0;

6. F (U) =
(

−λ12u
1 λ12

−λ12(u1)2 − 2λ12ω − λ22
√
ωu1 λ22

√
ω + λ12u

1

)
1√
ω
,

G(U) =
(

−μ12u
1 μ12

−μ12(u1)2 − 2ω − μ22
√
ωu1 μ22

√
ω + μ12u

1

)
− u1E,

H(U) =
(

ν1
ν2
√
ω + ν1u

1

)√
ω3, ω = u2 − (u1)2

2 ,

if Q1 = ∂u1 + u1∂u2 , Q2 = −I − u2∂u2 , Q3 = 0;

7. F (U) =
(
λ11 0
0 λ22

)
, G(U) =

(
0 μ12
0 0

)
− u1E, H(U) =

(
0

−(u2)2
)
,

if Q1 = ∂u1 , Q2 = −I − u2∂u2 , Q3 = ∂u2 ;

8. F (U) =
(

k(kν2 + 1) 0
(k(kν2 + 1) − λ22)u1 λ22

)
,

G(U) =
(

−μ12u
1 μ12

−2(kν2 + 1)ω − μ12(u1)2 μ12u
1

)
− u1E, H(U) =

(
0

ν2ω
2

)
, ω = u2 − (u1)2

2 ,

if Q1 = ∂u1 + u1∂u2 , Q2 = −I − u2∂u2 , Q3 = k∂u2 , k �= 0;

9. F (U) =
(

λ11 0
λ21(u1)m + 2λ11

u2

u1 −λ11

)
,

G(U) =
(

μ11(u1)m + 1
m

u2

u1 − 1
m

μ21(u1)2m + μ11(u1)mu2

u1 + 1
m (u

2

u1 )2 − 1
m

u2

u1

)
− u2

u1E,

H(U) =
(

ν1

ν2(u1)m + ν1
u2

u1

)(
u1)2m+1

,

if Q1 = u1∂u2 , Q2 = −m+1
m I + u1∂u1 , Q3 = 0, m �= 0;

10. F (U) =
(

θ̇ 0
u2

u1 ( θ
u1 + θ̇) − θ

u1

)
, G(U) = −u2

u1E, H(U) =
(

0
0

)
,

if Q1 = u1∂u2 , Q2 = −u2∂u2 , Q3 = 0;

11. F (U) =
(

λ11 0
λ21+2λ11(u2−ln u1)

)
,

u1 −λ11
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G(U) =
(

μ11 − 2(u2 − ln u1) u1

μ21+(μ11−1)(u2−ln u1)−(u2−ln u1)2
u1 1

)
1
u1 , H(U) =

(
ν1u

1

ν2 + ν1(u2 − ln u1)

)
1

(u1)2 ,

if Q1 = u1∂u2 , Q2 = u1∂u1 + ∂u2 , Q3 = 0,

where θ = θ(u1), ϕ = ϕ(u2) are arbitrary smooth functions of their arguments.

Proof. We find functional matrices F (U), G(U) and H(U), under which system (1) is invariant under 
the generalized Galilean algebra without mass operator (31), which is determined by operators Q1, Q2
and Q3. Non-equivalent representations of these operators (i.e. actually non-equivalent representations of 
the generalized Galilean algebra) are given in Table 2.

As in the previous theorem, for finding functions fab(u), gab(u) and ha(u), which make the system of 
equations (1) invariant under the generalized Galilean algebra, we substitute the corresponding functions ξμ
and ηa, derived from the representations of the operators of algebra (31) into Eqs. (18)–(20) of the deter-
mining system and solve it for each item in Table 2.

We illustrate the proof of the theorem by the example of the generalized Galilean algebra, which was 
obtained from the first item of Table 2. The realization of operators Q1, Q2 and Q3, which is written in 
that item, determines the basic operators of the generalized Galilean algebra:

∂0, ∂1, G = x0∂1 + ∂u1 , D = 2x0∂0 + x1∂1 − u1∂u1 + ku2∂u2 ,

Π = x2
0∂0 + x0x1∂1 + x1∂u1 + x0

(
−u1∂u1 + ku2∂u2

)
, k �= −2, (50)

and the coordinates of operator X:

ξ0 = ax2
0 + 2cx0 + d0, ξ1 = ax0x1 + cx1 + gx0 + d1,

η1 = a
(
x1 − x0u

1)− cu1 + g, η2 = (ax0 + c)ku2, k �= −2 (51)

where a, c, g and dμ are arbitrary parameters.
Substituting (51) into determining system (18)–(20) and taking into account formulas (40)–(42) (at τ = 0) 

and (45)–(47), we see that it can be reduced to the following system of equations:

fab
u1 + fa1

ub = 0, ga1+δa1u
1−δa2ku

2 = 0. (52)

It is evident that algebra (50) has been obtained by adding operator of projective transformations Π to 
algebra (43). Since nonlinearities, at which system (1) is invariant under the extended Galilean algebra for 
Q1 = ∂u1 , Q2 = −u1∂u1 + ku2∂u2 , have been found in Theorem 3 (namely, functions (48) at k �= 0 and (49)
at k = 0), we use them to solve system (52).

We start from the case at k �= 0. Substituting functions (48), which were found in Theorem 3, into 
system (52), we see that its solution depends on the meaning of the constant k as follows:

(a) at k �= −1 the general solution of the system is

f11 = λ11, f12 = λ12
(
u2)− 1

k−1
,

f21 = 0, f22 = λ22;

g11 = −u1, g12 = μ12
(
u2)− 2

k−1
,

g21 = ku2, g22 = μ22
(
u2)− 1

k − u1;

h1 = ν1
(
u2)− 3

k , h2 = ν2
(
u2)− 2

k+1 (53)

where λab, μab and νa are arbitrary constants.
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Substituting − 1
k = m into the obtained functions, we proceed to the nonlinearities described in the first 

item of Theorem 4 at m �= 0, 1.
(b) at k = −1 nonlinearities, which satisfy system (52) are

F =
(
λ11 λ12
λ21 λ22

)
, G =

(
0 μ12
−1 μ22

)
u2 − u1E, H =

(
ν1
ν2

)(
u2)3

where λab, μab and νa are arbitrary constants, which correspond to the second item of Theorem 4.

Now we consider the case at k = 0. Substituting functions (49), which were found in Theorem 3 into 
system (52) and solving it, we can see that at k = 0 the system is satisfied with the following values of the 
nonlinearities:

F =
(
λ11 0
0 ϕ22

)
, G = −u1E, H =

(
0
0

)
, ω = u2

where λ11 is an arbitrary constant and ϕ22 is an arbitrary smooth function of argument ω. These nonlin-
earities coincide with the third item of Theorem 4, where symbols λ11 = λ, ϕ22 = ϕ are introduced.

Similarly, solving the system of the determining equations for all non-equivalent representations of alge-
bra (31) defined in Table 2, we obtain the rest of the items of Theorem 4.

The theorem is proved. �
5.4. Invariance of system (1) under the Galilean algebra with mass operator

We study with what functional matrices F , G and H system (1) is invariant under the algebra AGM (1, 1).
The following statement is true.

Theorem 5. System of equations (1) is invariant under the Galilean algebra with mass operator (35) if and 
only if matrices F , G, H, to within equivalence transformations (23) and (24), are as follows:

F (U) =
(
λ21τu

2 + λ11 −λ21(τu2)2 − (λ11 − λ22)τu2 + λ12
λ21 −λ21τu

2 + λ22

)
,

G(U) =
(

(τm21 − 1)u2 + m11 P2(τu2)
m21 −(τm21 + 1)u2 + m22

)
,

H(U) =
( (−τm21 + 1

2 )(u2)2 + (τn2 −m11)u2 + n1

−m21u
2 + n2

)
, (54)

and Q0 = ∂u1 , Q1 = τu2∂u1 + ∂u2 , P2(τu2) = −m21(τu2)2 − (m11 −m22 +λ21)τu2 +m12 and λab, mab, na

are arbitrary constants;

F (U) =
(
ϕ(u1) −u1

u2

0 −1
2

)
, G(U) =

(
ψ1(u1) 0

u2ψ2(u1) 0

)
, H(U) =

(
χ1(u1)

u2χ2(u1)

)
, (55)

and Q0 = u2∂u2 , Q1 = 0, ϕ = ϕ(u1), ψa = ψa(u1), χa = χa(u1) are arbitrary smooth functions;

F (U) =
(

λ11
λ12
u2

λ21u
2 λ22

)
, G(U) =

( −ω + m11
m12
u2

(−λ21ω + m21)u2 −(λ21 + 2λ22 + 1)ω + m22

)
,

H(U) =
( τ

2ω
2 − (τm11 + m12)ω + n1

2 1 2

)
, (56)
u [ 2 (2τλ21 + 2λ22 + 1)ω − (τm21 + m22)ω + n2]



202 M.I. Serov et al. / J. Math. Anal. Appl. 422 (2015) 185–211
and Q0 = τ∂u1 + u2∂u2 , Q1 = ∂u1 , ω = u1 − τ ln u2;

F (U) =
(

λ11
λ12
u2

λ21u
2 λ22

)
, G(U) =

(− ln u2 + m11
m12
u2

m21u
2 −(λ21 + 1) ln u2 + m22

)
,

H(U) =
( 1

2 ln2 u2 −m11 ln u2 + n1

u2[−m21 ln u2 + n2]

)
, (57)

and Q0 = ∂u1 , Q1 = u2∂u2 ;

F (U) =
(

λ11 − λ12u
1 λ12

λ21 + (λ11 − λ22)u1 − λ12(u1)2 λ22 + λ12u
1

)
,

G(U) =
(

m11 −m12u
1 − ω m12

P2(u1) − (2λ11 − λ12u
1)ω m22 + m12u

1 − (λ12 + 1)ω

)
,

H(U) =
( ω2

2 −m11ω + n1

(u
1

2 + λ11)ω2 − (m11u
1 + m21)ω + n1u

1 + n2

)
, (58)

and Q0 = ∂u1 + u1∂u2 , Q1 = ∂u2 , ω = u2 − (u1)2
2 , P2(u1) = m21 + (m11 −m22)u1 −m12(u1)2;

F (U) =
(

λ11 λ12
u1

u2

λ21
u2

u1 λ22

)
, G(U) =

(
A lnω + m11 (B lnω + m12)u

1

u2

(C lnω + m21)u
2

u1 D lnω + m22

)
,

H(U) =
( (−1

2 (A + sB) ln2 ω − (m11 + sm12) lnω + n1)u1

(−1
2 (C + sD) ln2 ω − (m21 + sm22) lnω + n2)u2

)
, (59)

and Q0 = u1∂u1 + su2∂u2 , Q1 = u2∂u2 , ω = u2

(u1)s , A = −(sλ12 + 2λ11 + 1), B = −λ12, C = −sλ21, 
D = −(λ21 + 2sλ22 + 1);

F (U) =
(

λ11 λ12
u1

u2

λ21
u2

u1 λ22

)
, G(U) =

(−(λ12 + 1) ln u1 + m11 m12
u1

u2

(−λ21 ln u1 + m21)u
2

u1 −(2λ22 + 1) ln u1 + m22

)
,

H(U) =
( (−m12 ln u1 + n1)u1

(2λ22+1
2 ln2 u1 −m22 ln u1 + n2)u2

)
, (60)

and Q0 = u2∂u2 , Q1 = u1∂u1 ;

F (U) =
(−1

2 0
0 − 1

2s

)
, G(U) =

( −sα(ω) α(ω)u
1

u2

−sβ(ω)u
2

u1 β(ω)

)
, H(U) =

(
χ1(ω)u1

χ2(ω)u2

)
, (61)

and Q0 = u1∂u1 + su2∂u2 , Q1 = 0, ω = u2

(u1)s , α, β, χa are arbitrary smooth functions, s �= 0;

F (U) =
(
λ11 λ12
0 λ11

)
, G(U) =

(−(2λ11 + 1)ω + m11 P1(ω) + (m22 −m11)u
1

u2

0 −(2λ11 + 1)ω + m22

)
,

H(U) =
(
u2[(λ12 − τ

2 )ω2 + τm11ω + n1] + u1P2(ω)
u2P2(ω)

)
, (62)

and Q0 = I+τu2∂u1 , Q1 = u2∂u1 , ω = u1

u2 −τ ln u2, P1(ω) = −2(τλ11+λ12)ω+m12, P2(ω) = [(λ11 + 1
2 )ω2−

m22ω + n2];
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F (U) = −1
2

(
1 −1
0 1

)
, G(U) =

(
ψ11 + ψ21 u1

u2 −(u
1

u2 + 1)(ψ11 + ψ21 u1

u2 )
ψ21 −(u

1

u2 + 1)ψ21

)
,

H(U) =
(
u2χ1 + u1χ2

u2χ2

)
, (63)

and Q0 = I + u2∂u1 , Q1 = 0, ω = u1

u2 − ln u2, ψa1 = ψa1(ω), χa = χa(ω) are arbitrary smooth functions;

F (U) =
(
λ21

u1

u2 + λ11 −2λ(u
1

u2 )2 + (λ22 − λ11)u
1

u2 + λ12

λ21 −λ21
u1

u2 + λ22

)
,

G(U) =
(
m21

u1

u2 + A P2(u
1

u2 ) − (λ11 + λ22) ln u2

m21 −m21
u1

u2 + B

)
,

H(U) =
(
u1P1(ln u2) + u2[(λ21 + 1

2 ) ln2 u2 −m11 ln u2 + n1]
u2P1(ln u2)

)
, (64)

and Q0 = u2∂u1 , Q1 = I, A = −(2λ21 +1) ln u2 +m11, B = −(λ21 +1) ln u2 +m22, P2(u
1

u2 ) = −m21(u
1

u2 )2 +
(B −A)u

1

u2 + m12, P1(ln u2) = −m21 ln u2 + n2;

F (U) =
(

c1 + λ1 − 2u1

�u2
�λ�u c2 + λ2 − 2u2

�u2
�λ�u

−c2 + λ2 − 2u2

�u2
�λ�u c1 − λ1 + 2u1

�u2
�λ�u

)
,

G(U) =
(

α1 + β1 − 2u1

�u2
�β�u α2 + β2 − 2u2

�u2
�β�u

−α2 + β2 − 2u2

�u2
�β�u α1 − β1 + 2u1

�u2
�β�u

)
, H(U) =

(
u1χ1 + u2χ2

−u1χ2 + u2χ1

)
, (65)

and Q0 = k1I − k2J , Q1 = m1I −m2J , �k 2 = 1, |m1| + |m2| �= 0, ω = k2 ln �u2 + 2k1 arctg u2

u1 , �α = �pω + �m, 
�β = �rω + �l, �χ = �γω2+�σω+�n; �p = 1

2�k�m⊥ (2(c1k1 − c2k2) − �λ�k + 1, 2(c1k2 + c2k1) − �λ�k⊥), �m = (m1, m2), 
�r = 1

2�k�m⊥ (k1λ1 − k2λ2, k1λ2 + k2λ1), �n = (n1, n2), �l = (l1, l2), �k⊥ = (−k2, k1), �γ = k1�p−k1�r+k2�p
⊥+k2�r

⊥

4�k�m⊥ , 
�σ = k1 �m−k1�l+k2 �m

⊥+k2�l
⊥

2�k�m⊥ , ca, ka, λa, ma, na, la ∈ R;

F (U) = −1
2

(
k1 −k2
k2 k1

)
, G(U) =

( 2k1�k�β − 2u1

�u2
�β�u 2k1�k

⊥�β − 2u2

�u2
�β�u

2k2�k�β − 2u2

�u2
�β�u 2k2�k

⊥�β + 2u1

�u2
�β�u

)
,

H(U) =
(

u1χ1 + u2χ2

−u1χ2 + u2χ1

)
, (66)

and Q0 = k1I − k2J , Q1 = 0, ω = k2 ln �u2 + 2k1 arctg u2

u1 , αa = αa(ω), βa = βa(ω), χa = χa(ω) are 
arbitrary smooth functions, ka are arbitrary constants and �k 2 = 1.

Proof. We consider the case when operators Q0 and Q1 are Q0 = ∂u1 , Q1 = τ1∂u2 + τ2u
2∂u1 (that corre-

sponds to the first item in Table 3). Then the Galilean operator has the following coordinates

ξ0 = 0, ξ1 = x0, ηa =
(
x1 + τ2u

2)δa1 + τ1δa2. (67)

Substituting (67) into (16)–(20) and splitting x1 into degrees, we obtain

fab
u1 = gabu1 = ha

u1 = 0, (68)

τ1f
ab
u2 = τ2

(
f2bδa1 − fa1δb2

)
, (69)

τ1g
ab
u2 = τ2

(
g2bδa1 − ga1δb2

)
− fa1

ub − δab, (70)

τ1h
a
u2 = τ2h

2δa1 − ga1. (71)

Since at τ1 = 0 system (68)–(71) is inconsistent, we assume that τ1 = 1.
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Thus, without loss of generality, we can assume that

G = x0∂1 + x1∂u1 + τu2∂u1 + ∂u2 .

The general solution of (68)–(69) is

f11 = λ21τu
2 + λ11, f12 = −λ21

(
τu2)2 − (λ11 − λ22)τu2 + λ12,

f21 = λ21, f22 = −λ21τu
2 + λ22. (72)

Substituting gab = ψab − u2δab into system (70), we reduce it to (69). Therefore, we can conclude that

ψ11 = m21τu
2 + m11, ψ12 = −m21

(
τu2)2 − (m11 −m22)τu2 + m12,

ψ21 = m21, ψ22 = −m21τu
2 + m22.

After the inverse substitution, we obtain

g11 = (τm21 − 1)u2 + m11, g12 = −m21
(
τu2)2 − (m11 −m22)τu2 + m12,

g21 = m21, g22 = −(τm21 + 1)u2 + m22. (73)

Substituting (73) into the system of equations (71) and solving it, we have

h1 =
(
−τm21 + 1

2

)(
u2)2 + (τn2 −m11)u2 + n1, h2 = −m21u

2 + n2. (74)

Formulas (72), (73) and (74) determine functions (54).
The other items of this theorem are proved in the analogous way.
The theorem is proved. �

5.5. Invariance of system (1) under the extended Galilean algebra with mass operator

We study which functional matrices F , G and H allow system (1) to be invariant under the algebra
AGM

1 (1, 1).
The following statement is true.

Theorem 6. System of equations (1) is invariant under extended Galilean algebra with mass operator (36)
if and only if matrices F , G and H, to within equivalence transformations (23) and (24), are as follows:

F (U) =
(
λ11 0
0 λ22

)
, G(U) =

(
−u2 m12
0 −u2

)
, H(U) = 1

2
(
u2)2 ( 1

0

)
, (75)

and Q0 = ∂u1 , Q1 = ∂u2 , Q2 = −u2∂u2 ;

F (U) =
(
λ11 −u1

u2

0 −1
2

)
, G(U) =

(
u1)k (m11u

1 0
m21u

2 0

)
, H(U) =

(
u1)2(k+1)

(
n1u

1

n2u
2

)
, (76)

and Q0 = u2∂u2 , Q1 = 0, Q2 = − 1
k+1u

1∂u1 , k �= −1;

F (U) =
(
λ11 0
0 λ22

)
, G(U) =

(
−u1 0
m21u

2 −(2λ22 + 1)u1

)
,

H(U) =
(
u1)2u2

(
0

1

)
, (77)
λ22 + 2
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and Q0 = u2∂u2 , Q1 = ∂u1 , Q2 = −u1∂u1 ;

F (U) =
(
−1

2 0
0 − 1

2s

)
, G(U) = ωk

( −sm11 m11
u1

u2

−sm12
u2

u1 m12

)
, H(U) = ω2k

(
n1u

1

n2u
2

)
, (78)

and Q0 = u1∂u1 + su2∂u2 , Q1 = 0, Q2 = − 1
ku

2∂u2 , ω = u2

(u1)s , s �= 0, k �= 0;

F (U) =
(
λ11 0
0 λ11

)
, G(U) = −(2λ11 + 1)u

1

u2

(
1 0
0 1

)
,

H(U) =
(
λ11 + 1

2

)(
u1

u2

)2 (
u1

u2

)
, (79)

and Q0 = I, Q1 = u2∂u1 , Q2 = u2∂u2 ;

F (U) = −1
2

(
1 −τ

0 1

)
, G(U) = emω

(
m11 + m21

u1

u2 −(u
1

u2 + τ)(m11 + m21
u1

u2 )
m21 −(u

1

u2 + τ)m21

)
,

H(U) = e2mω

(
n1u

2 + n2u
1

n2u
2

)
, (80)

and Q0 = I + τu2∂u1 , Q1 = 0, Q2 = − 1
mu2∂u1 , ω = u1

u2 − τ ln u2, m �= 0;

F (U) = −1
2

(
1 0
0 1

)
, G(U) =

(
m11

u1

u2 −m11(u
1

u2 )2

m21 −m21
u1

u2

)
, H(U) =

(
u1

u2

)2 (
n1u

1

n2u
2

)
, (81)

and Q0 = I, Q1 = 0, Q2 = u2∂u2 ;

F (U) = −1
2

(
k1 −k2
k2 k1

)
, G(U) = e−

1
2�ω

( 2k1�k�m− 2u1

�u2 �m�u 2k1�k
⊥ �m− 2u2

�u2 �m�u

2k2�k�m− 2u2

�u2 �m�u 2k2�k
⊥ �m + 2u1

�u2 �m�u

)
,

H(U) = e−
1
�ω

(
�n�u cos m3

� ω + �n�u⊥ sin m3
� ω

−�n�u⊥ cos m3
� ω + �n�u sin m3

� ω

)
, (82)

and Q0 = k1I−k2J , Q1 = 0, Q2 = k3I+m3J , ω = k2 ln �u2+2k1 arctg u2

u1 , � = k2k3−k1m3, �m = (m1, m2).

Proof. We consider nonlinearities (54). Extension of the Galilean algebra by mass operator is possible only 
at τ = 0. According to Table 4, the operator of scale transformations has the form D = 2x0∂0 + x1∂1 +
k3∂u1 − u2∂u2 . Since algebra (36) includes operator Q0 = ∂u1 under the condition, that nonlinearities of 
system (1) has the form (54) thus, without loss of generality, we can assume that k3 = 0. Therefore its 
coordinates are

ξ0 = 2x0, ξ1 = x1, ηa = −δa2u
2. (83)

Substituting (83) into (16)–(20), we obtain

δa2f
2b − δb2f

a2 = 0, (84)

−δc2u
2gabuc + gab − δb2g

a2 + δa2g
2b = 0, (85)

−u2ha
u2 + 2ha + δa2h

2 = 0. (86)

Substituting (54) into the system of equations (84)–(86) and solving it, we get that λ12 = λ21 = m11 =
m21 = m22 = n1 = n2 = 0. Thus, nonlinearities F , G and H have the form (75).
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The first item of the theorem is proved.
Using similar reasoning, we can prove other items of this theorem. �

5.6. Invariance of system (1) under the generalized Galilean algebra with mass operator

We study which functional matrices F , G and H allow system (1) to be invariant under the algebra
AGM

2 (1, 1).
The following statement is true.

Theorem 7. The system of equations (1) is invariant under the generalized Galilean algebra with mass 
operator if and only if it has the following form, to within equivalence transformations (23), (24):

U0 = ∂1

[(
λ11 0
0 λ22

)
U1

]
+
(
−u2 m12
0 −u2

)
U1 + (u2)2

2

(
1
0

)
, (87)

and Q0 = ∂u1 , Q1 = ∂u2 , Q2 = (λ11 + m12)∂u1 − u2∂u2 , Q3 = 0;

U0 = ∂1

[(
λ11 −u1

u2

0 −1
2

)
U1

]
+
(
m11u

1 0
m21u

2 0

)
U1 +

(
u1)2 (n1u

1

n2u
2

)
, (88)

and Q0 = u2∂u2 , Q1 = 0, Q2 = −u1∂u1 + 1
2u

2∂u2 , Q3 = 0;

U0 = ∂1

[(
λ11 0
0 λ22

)
U1

]
+

(
−u1 0
m21u

2 −(2λ22 + 1)u1

)
U1 +

(
u1)2u2

(
0

λ22 + 1
2

)
, (89)

and Q0 = u2∂u2 , Q1 = ∂u1 , Q2 = −u1∂u1 + (λ22 + m21)u2∂u2 , Q3 = 0;

U0 = ∂1

[(
−1

2 0
0 − 1

2s

)
U1

]
+ ω2

( −sm11 m11
u1

u2

−sm12
u2

u1 m12

)
U1 + ω4

(
n1u

1

n2u
2

)
, (90)

and Q0 = u1∂u1 + su2∂u2 , Q1 = 0, Q2 = −1
2 (I + su2∂u2), Q3 = 0, ω = u2

(u1)s , s �= 0;

U0 = ∂1

[(
−1

2 0
0 −1

2

)
U1

]
+ u2

u1

(
n1u

1

n2u
2

)
, (91)

and Q0 = I, Q1 = 0, Q2 = (−1
2 + n1

n1−n2
)I − 2u2∂u2 , Q3 = 1

n1−n2
u1∂u2 , n1 �= n2;

U0 = ∂1

[
−1

2

(
1 −1
0 1

)
U1

]
+ e−2ω

(
m11 + m21

u1

u2 −(u
1

u2 + 1)(m11 + m21
u1

u2 )
m21 −(u

1

u2 + 1)m21

)
U1

+ e−4ω
(
n1u

2 + n2u
1

n2u
2

)
, (92)

and Q0 = I + u2∂u1 , Q1 = 0, Q2 = −1
2I, Q3 = 0, ω = u1

u2 − ln u2;

U0 = ∂1

[
−1

2

(
k1 −k2
k2 k1

)
U1

]
+ e

1
k2

ω

( 2k1�k�m− 2u1

�u2 �m�u 2k1�k
⊥ �m− 2u2

�u2 �m�u

2k2�k�m− 2u2

�u2 �m�u 2k2�k
⊥ �m + 2u1

�u2 �m�u

)
U1

+ e
2
k2

ω

(
�n�u

−�n�u⊥

)
, (93)

and Q0 = k1I − k2J , Q1 = 0, Q2 = −1I, Q3 = 0, �m = (m1, m2), ω = k2 ln �u2 + 2k1 arctg u2
1 , |�k| = 1.
2 u
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Proof. We consider the system (1) with nonlinearities (75). For the system (1) with such nonlinearities the 
generalization of the extended Galilean algebra with mass operator, according to Table 5, is possible only 
at Q3 = 0. Then operator Π has the following coordinates:

ξ0 = x2
0, ξ1 = x0x1, ηa = δa1

(
x2

1
2 + k3x0

)
+ δa2

(
−x0u

2 + x1
)
. (94)

We substitute (94) into (16)–(20) and split the obtained equations into x0 and x1. As a result, we obtain 
system of equations (70) and (71), performed according to Theorem 5 and (84)–(86), which satisfy the 
previous theorem and the following system:

fa1 + ga2 + δa2u
2 − δa1k3 = 0. (95)

From (75), (95), it follows that k3 = λ11 +m12. Thus, system (1) with nonlinearities (75) has the form (87).
So, the first item of the theorem is proved. The other items of this theorem are proved in the same way.
The theorem is proved. �

6. Exact solutions of the Van der Waals system

We consider the system, which has been obtained in the second case of Theorem 4. At λ12 = λ21 = ν1 =
ν2 = μ22 = 0 it has the form

u1
0+u1u1

1 = λ11u
1
11+μ12u

2u2
1,

u2
0+u1u2

1 = λ22u
2
11−u2u1

1. (96)

System (96) is a system of equations of the Van der Waals fluid, where u1 is the velocity of the fluid, u2 is 
the density, λ11 is the kinematic viscosity coefficient, λ22 is the diffusion coefficient, μ12 is the convection 
coefficient. This system is invariant under the generalized Galilean algebra

AG2(1, 1) =
〈
∂0, ∂1, G = x0∂1 + ∂u1 , D = 2x0∂0 + x1∂1 − I, Π = x2

0∂0 + x0x1∂1 + x1∂u1 − x0I
〉

(97)

We use the symmetry properties of the system (96) for finding its exact solutions.
The nonequivalent ansätze, which were constructed using the operators of algebra (97), have the form

(1) ua = ϕa(ω), ω = x1 − kx0;
(2) u1 = ϕ1(ω) + kx0, u2 = ϕ2(ω), ω = x1 − k

2x0
2;

(3) ua = ϕa(ω)√
x0

, ω = x1√
x0

;

(4) u1 = ϕ1(ω)+x0ω√
x2
0+1 , u2 = ϕ2(ω)√

x2
0+1 , ω = x1√

x2
0+1 ,

where ϕa(ω) – arbitrary smooth functions, k – an arbitrary constant.
These ansätze reduce system (96) to the following systems of ODEs

(1) λ11(ϕ1)′′ + (k − ϕ1)(ϕ1)′ + μ12ϕ
2(ϕ2)′ = 0,

λ22(ϕ2)′′ + (k − ϕ1)(ϕ2)′ − ϕ2(ϕ1)′ = 0;
(2) λ11(ϕ1)′′ − ϕ1(ϕ1)′ + μ12ϕ

2(ϕ2)′ − k = 0,
λ22(ϕ2)′′ − (ϕ1ϕ2)′ = 0;

(3) 2λ11(ϕ1)′′ + (1 − 2(ϕ1)′)ϕ1 + ω(ϕ1)′ + 2μ12ϕ
2(ϕ2)′ = 0,

2λ22(ϕ2)′′ + (ω − 2ϕ1)(ϕ2)′ + (1 − 2(ϕ1)′)ϕ2 = 0;
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Fig. 1. Exact solution (99) at C = 6, λ11 = 0.6, μ12 = 1, k = 1.

Fig. 2. Exact solution (100) at λ11 = 0.2, μ12 = 5, λ22 = 0.5.

(4) λ11(ϕ1)′′ − ϕ1(ϕ1)′ + μ12ϕ
2(ϕ2)′ − ω = 0,

λ22(ϕ2)′′ − (ϕ1ϕ2)′ = 0.

Solving the first reduced system and using a corresponding ansatz, we find the solutions of system (96)
at λ22 = λ11

u1 = 2αλ11(Ceαω + 1)
(Ceαω + 1)2 + 4μ12e2αω + k − αλ11, u2 = 4αλ11e

αω

(Ceαω + 1)2 + 4μ12e2αω ; (98)

u1 = k − 2λ11ω

ω2 + β
, u2 = C

ω2 + β
, (99)

where ω = x1 − kx0, β = C2μ12
4λ2

11
; α, k, C – const. Solution (99) at C = 6, λ11 = 0.6, μ12 = 1, k = 1 is 

presented in Fig. 1.
Solving the forth reduced system, we find the solution of system (96):

u1 = x0x1

x2
0 + 1 − λ22

x1
, u2 = 1

√
μ12

(
x1

x2
0 + 1 +

√
λ22(λ22 − 2λ11)

x1

)
(100)

Solution (100) at λ11 = 0.2, μ12 = 5, λ22 = 0.5 is presented in Fig. 2.
In Figs. 1 and 2 the upper graphs are u1, and lower graphs are u2. The solutions, which are shown in the 

figures, are continuous, bounded and non-negative. So we may suggest that they can be used for description 
of some specific physical processes.

Solutions (98), (99) are plane wave solutions, but if they are reproduced by transformations, which are 
generated by the projective operator Π:
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x′
0 = x0

1 − θx0
, x′

1 = x1

1 − θx0
,

(
u1)′ = u1 − θx1

1 − θx0
,

(
u2)′ = u2

1 − θx0
,

where θ – group parameter, then we obtain the solutions of system (96), which are non-plane wave solutions,

u1 = k − x1θ

1 − θx0
− 2λ11(x1 − kx0)

(x1 − kx0)2 + C2μ12(1 − θx0)2
, u2 = 2Cλ11(1 − θx0)

(x1 − kx0)2 + C2μ12(1 − θx0)2
,

u1 = 1
1 − x0θ

(
2αλ11(Ceαω + 1)

(Ceαω + 1)2 + 4μ12e2αω − x1θ + k − αλ11

)
, u2 = 4αλ11e

αω

(1 − x0θ)((Ceαω + 1)2 + 4μ12e2αω) ,

where ω = x1−kx0
1−θx0

.

7. Conclusions

After analyzing the results, we can see that some of the obtained systems are a generalization of the 
previously known ones. System (96) is a system of equations of the Van der Waals fluid that is effectively 
used for description of processes of the kinetic molecular theory of gases and liquids [23]. System (88)
summarizes a system of chemotaxis equations [47], which describes the formation and spread of the Adler 
chemotactic rings and various processes of the structure formation in bacterial colonies in their interaction. 
System (90) is a nonlinear system of convection–diffusion equations, obtained in papers [9] and [48]. Systems 
(89), (91) and (92), (93) generalize some results, which were obtained in works [4–7] and [33–38] respectively, 
where the group classification of reaction–diffusion systems has been studied. If in system (93) we proceed 
to a function of a complex variable, we obtain a generalization of the Ginzburg–Landau equation, which is 
the main nonlinear equation of physics of non-equilibrium environment and describes a diffuse chaos and 
dissipative structures in hydrodynamics, physics of lasers and chemical kinetics (see, e.g., [11,19,26,32])

ψ0 = −k

2ψ11 +
[
m

2
(
2k1kψ

∗ψ1 −
(
|ψ|2

)
1

)
+ n|ψ|4e2w

]
e2wψ, (101)

where ψ = u1 + iu2, k, m, n ∈ C. Symmetry properties of the Ginzburg–Landau equation have been studied 
in papers [2,34].

At k1 = 0, from Eq. (101) we can get a generalization of the Schrödinger equation with a derivative 
nonlinearity (see, e.g., [3,13–16,20,21,43])

iψ0 = 1
2ψ11 +

[
α
(
|ψ|2

)
1 + β|ψ|4

]
ψ (102)

where α, β ∈ C that is invariant under the generalized Galilean algebra with mass operator AGM
2 (1, 1).

Eq. (102) belongs to the class of equations

iψ0 = −1
2ψ11 +

(
λ1 + λ2|ψ|2 + λ3|ψ|4 + λ4∂1|ψ|2

)
ψ +

(
λ5 + λ6|ψ|2

)
∂1ψ,

which is used for modeling of wave processes in different parts of physics, for example, in nonlinear optics. 
They include, for instance, the Alfvén waves with circular polarization, which are magnetohydrodynamical 
waves, spreading in plasma with a magnetic field, the Stokes waves in a fluid of finite depth, etc. (see, e.g., 
[28–31,44]).

Thus, in this paper we have found, to within equivalence transformations (23) and (24) nonlinearities fab, 
gab, ha, which allow system (1) to be invariant under the Galilean algebra (with and without mass operator) 
and their main extensions by operators of scale and projective transformations. Among the obtained systems 
there are generalizations of such well-known equations as the Schrödinger equation, the Ginzburg–Landau 
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equation, a chemotaxis system, the Van der Waals system, etc. Since the obtained systems have certain 
symmetry properties, which are a certain characteristic of similar systems, describing processes, based on 
the principle of Galilean relativity, they are more suitable for a description of such processes.
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