

ЛАРЦЕВА ІРИНА ІГОРІВНА

Кандидат технічних наук, доцент кафедри видобування нафти і газу та геотехніки Полтавського національного технічного університету імені Юрія Кондратюка, член Всеукраїнського товариства механіки грунтів, геотехніки та фундаментобудування.

Основні напрямки діяльності: дослідження і розрахунок закріплення грунтів грунтоцементними елементами; дослідження фізико-механічних характеристик та водонепроникності грунтоцементу як матеріалу; розрахунок і проектування основ, фундаментів, підпірних стін у складних інженерно-геологічних умовах.

Автор 20 наукових праць.
e-mail: larchik.84@mail.ru

ВИЗНАЧЕННЯ ХАРАКТЕРИСТИК МІЦНОСТІ ҐРУНТІВ, ЗАКРІПЛЕНИХ ВЕРТИКАЛЬНИМИ ҐРУНТОЦЕМЕНТНИМИ ЕЛЕМЕНТАМИ

Abstract

Ключові слова: зсувонебезпечний схил, бурозмішувальна технологія, лрунтоцементні елементи, структурне зчеплення, одноплощинне зрушення.

Abstract

Вивчення поліпиення структурного зчеплення цементацією виконане на лабораторному та стендовому приладі шляхом проведення випробувань на одноплощинне зрушення закріплених зразків. Проведено чисельне моделювання напружено-деформованого стану закріпленого лрунту методом скінченних елементів, результати якого узгоджуються з експериментальними даними. Запропоновано методику визначення характеристик міцності закріпленого лрунту, зокрема, структурного зчеплення.

Abstract

Изучение улучшения структурного сцепления цементацией выполнено на лабораторном и стендовом приборах путем проведения испьтаний на одноплоскостной срез закрепленных образиов. Проведено численное моделирование напряженно-деформированного состояния закрепленного грунта методом конечных элементов, результаты которого согласованы с экспериментальными данными. Предложена методика определения характеристик прочности закрепленного грунта, в частности, структурного сцепления.

Examination of improvement of structural cohesion by cementation was performed on a laboratory and stand device by testing it concerning oneplane displacement of the fastened samples.. The numerical design of tenselydeformed state of fastened soil is performed by the method of ultimate elements and results of which are coordinated with experimental information. The method of determination of durability characteristics of the fastened soil is offered, particularly for structural cohesion

ВСТУП

В наш час, у зв'язку з освоєнням зсувонебезпечних територій під будівництво, виникає необхідність збереження ïх у стабільному (стійкому) стані протягом тривалого часу. Поширеними методами стабілізації та запобігання зсувам є спорудження утримуючих споруд різних типів, таких, як підпірні стінки, пальові ряди, контрбанкети тощо. Використовується також поліпшення властивостей грунтів з метою штучного збільшення їх міцності. Серед цих методів ін'єкційна цементація грунтів застосовується частіше за інші, але вона ефективна лише для тріщинуватих скельних порід, щебенів і крупних пісків. Слабопроникні глинисті грунти, які в центральній Україні найбільш розповсюджені та беруть участь у зсувних процесах, таким методом не закріплюються.

В останні роки дістав визнання метод цементації глинистих грунтів шляхом їх армування вертикальними грунтоцементними елементами (ЦЕ). Такі елементи можна влаштовувати, використовуючи наступні технологіі: бурозмішувальну, струминну та струминно-змішувальну [1-6]. На території України поширена цементація за бурозмішувальною технологією, яка дозволяє поліпшувати слабкі глинисті грунти навіть текучої консистенції. Завдяки нагнітанню в Ірунт цементного розчину відбувається скріплення частинок і агрегатів грунту, тобто виникає штучне структурне зчеплення, а грунт набуває певної жорсткості.

Надійність, технологічність, економічність, невеликі енергоємність і матеріаломісткість - це основні показники, які обгрунтовують актуальність досліджень використання грунтоцементу для закріплення грунтів зсувонебезпечних схилів.

НЕВИРІШЕНІ ПРОБЛЕМИ, ЯКИМ ПРИСВЯЧЕНА POBOTA

Характеристики міцності грунтів, зокрема структурне зчеплення грунту, є визначальними в багатьох розрахунках, особливо при оцінюванні стійкості зсувних і зсувонебезпечних територій та схилів. Існує багато методів визначення показників механічних характеристик, які ввійшли у державні стандарти. При визначенні показників міцності грунтів, котрі утворюють схил, необхідно користуватися методом, що найбільш повно відповідає виду деформацій грунтової основи. Для дослідження грунтів зсувонебезпечних схилів таким методом $€$ випробування на прямий зріз.

Визначення напружено-деформованого стану (НДС) при різних параметрах армованої основи нині реалізується за допомогою чисельних методів.

Згідно з діючими нормами [7] деформативність утвореної штучної основи визначається як середньозважена між прунтом та елементами закріплення. Проте сьогодні ще немає методики, яка дозволяє визначати показники міцності системи "'рунт - елементи армування".

ВИКЛАД ОСНОВНОГО МАТЕРІАЛУ ДОСЛІДЖЕНЬ

За основний метод визначення характеристик міцності грунтів прийнято випробування на одноплощинне зрушення. Цей метод найточніше моделює особливості роботи грунту при зсувних процесах і дозволяє визначати кут внутрішнього тертя φ та питоме (довготривале) зчеплення c грунту, яке складається зі структурного $c_{s t}$ і водноколоїдного c_{w} зчеплень.

Для дослідження ефекту закріплення грунтів зсувонебезпечних територій ҐЦЕ використано такі грунти:

- Ірунт №1 - суглинок лесований, світло-жовтий, високопористий, просадочний, твердий, із числом пластичності $I_{p}=0,09$;
- грунт №2 - суглинок лесований, світло-коричневий, напівтвердий, високопористий, із числом пластичності $I_{p}=0,11$.
Ці грунти найчастіше беруть участь у зсувних процесах: по них проходять поверхні ковзання; вони зсуваються по підстилаючих шарах. Для досліджень спеціально були використані грунти порушеної структури, оскільки в них структурні зв’язки вже зруйновані. Для випробувань грунтів зсувних і зсувонебезпечних територій необхідно, щоб їх фізичні характеристики при випробуванні якнайточніше відповідали природним при прогнозованій критичній ситуації, тому досліджувані суглинки були доведені до текучопластичної консистенції. На момент випробувань вологість закріплених грунтів становила $W=0,28$.

Лабораторні випробування армованих грунтів виконувались на приладі одноплощинного зрізу ПСГ-2М конструкції інституту "Гідропроект". Розміщення ГЦЕ армування виконувалося за схемою, поданою на рис. 1. Також одна серія зразків виготовлялася без армування. За процент армування грунту прийнято відношення сумарної площі поперечних перерізів ҐЦЕ до площі поперечного перерізу зразка. В цьому випадку площа зразка дорівнюе $40 \mathrm{~cm}^{2}$. Діаметр елементів становить 4 мм, висота - 30 мм. Верхні та нижні 2 - 3 мм свердловини заповнювалися грунтом. Грунтоцемент був виготовлений із грунту, цементу (15% від ваги сухого грунту) й води (В/Ц = 1). Після виготовлення зразки зберігалися протягом 28 діб у вологому ексикаторі для набуття грунтоцементом необхідної міцності. По закінченні цього строку зразки випробовувались на приладі ПСГ-2М при трьох вертикальних тисках $0,05,0,1$ та 0,15 МПа за схе-

Рис. 1 Зразки закріпленого грунту: $1-2,2 \%$ (7 ЦЦЕ); $2-4,4 \%$ (14 ГЦЕ); 3-6,6\% (21 ЦЕ).

мою неконсолідовано-недренованого випробування. Для однієї серії зразків проводилося 6 випробувань на одноплощинне зрушення.

За результатами кожного окремого зрушення були побудовані графіки залежності дотичних напружень від деформацій у логарифмічних координатах " $\lg \tau-\lg \Delta l$ ". Приклад одного з таких графіків подано на рис. 2. Такі побудови дозволяють не проводити повторних випробувань грунту "плашка по плашці", як того вимагає ДСТУ Б В.2.1-2-96, а визначати дотичні напруження, котрі відповідають структурному та довготривалому зчепленню, за одним графіком випробувань зразків грунту.

Далі за методом найменших квадратів згідно з формулами вищезгаданого ДСТУ визначалися параметри міцності (структурне $c_{s t}$ і довготривале с зчеплення та кут внутрішнього тертя φ), значення яких для досліджуваних грунтів наведено в табл. 1. Графіки залежності міцності закріплених суглинків лесованих № $1\left(I_{p}=0,09\right)$ i

Рис. 2 Графік залежності дотичних напружень $l g \tau$ від деформацій $l g \Delta l$ при $\sigma=0,1$ МПа для грунту №1: 1 - незакріпленого; 2 - при $i=4,4 \%$.

Таблица. 1
Зіставлення характеристик міиності незакріпленого і закріпленого лрунту за результатами лабораторних досліджень

Процент армування $i, \%$	Грунт №1 $\left(I_{\mathrm{p}}=0,09\right)$ (порушена структура)		Грунт №2 $\left(I_{\mathrm{p}}=0,11\right)$ (порушена структура)	
	c_{st}, кПа/ φ_{1}, град.	c, кПа/ φ_{2}, град.	$c_{\text {st }}$, кПа/ φ_{1}, град.	c, кПа/ φ_{2}, град.
0	$1,2 / 6$	$11,8 / 7$	$0,7 / 10$	$20,6 / 10$
2,2	$5,3 / 6$	$20,3 / 7$	$6,8 / 10$	$33,7 / 10$
4,4	$12,3 / 7$	$23 / 8$	-	-
6,6	$14,3 / 7$	$33 / 9$	$12,3 / 10$	$38,3 / 10$

теристики міцності армованих грунтів був використаний стендовий прилад одноплощинного зрушення грунту СПЗ-1, зображений на рис. 5. Прилад СПЗ-1 відповідає всім вимогам ДСТУ стосовно обладнання, яке застосовується для випробувань на одноплощинне зрушення. На відміну від лабораторного приладу ПСГ-2М стендовий прилад передбачає зміщення нижньої частини зразка відносно верхньої.

За допомогою цього приладу були проведені випробування на одноплощинне зрушення грунтів № 1 і № 2 порушеної структури без закріплення та із закріпленням вертикальними ЦЕ. Діаметр зразків становить $290 \mathrm{mм}\left(A=660 \mathrm{~cm}^{2}\right)$ та 260 мм ($A=530,7 \mathrm{~cm}^{2}$), висота - 220 мм. Тобто площа поперечного перерізу досліджуваних зразків для стендових випробувань в 16,5 і 12,8 разів відповідно перевищує площу зразків грунту для лабораторних випробувань, у яких площа поперечного перерізу становить $A=40 \mathrm{~cm}^{2}$. На момент випробувань вологість закріплених грунтів становила $W=0,28$.

Розміщення вертикальних ГЦЕ виконувалося за схемою, поданою на рис. 6. Грунт № 1 закріплювався 3 процентом армування $i=2,6$ та $4,4 \%$; грунт № $2-3 i=2,6$ та $3,0 \%$. Також одна серія зразків виготовлялася без армування. Діаметр елементів становить 14 мм, висота - 180 мм. Верхні та нижні 20 мм свердловини заповнювалися грунтом. Грунтоцемент був виготовлений із грунту, цементу (15 \% від ваги сухого грунту) й води (В/Ц = 1,5-2). Витрата води для суміші порівняно з грунтоцементом, яким закріплювались кільця діаметром 71 мм, збільшена для того, щоб досягти достатньої пластичності суміші при нагнітанні у свердловину. Після виготовлення зразки зберігалися протягом 28 діб у вологих умовах. По закінченні цього строку вони випробовувались на приладі СПЗ-1 тільки при одному вертикальному тискові 0,1 МПа. Для однієї серії зразків проводилося 6 випробувань на прямий зріз.

За результатами зрушень були побудовані графіки залежності "логарифм дотичних напружень $\lg \tau$ - логарифм деформацій $\lg \Delta l$ ", за якими визначили граничні опори зрушенню, що відповідають структурному та довготривалому зчепленню. Параметри міцності для закріплених грунтів розраховувалися із рівняння Мора - Кулона

$$
\begin{align*}
\tau_{\mathrm{st}} & =\sigma \operatorname{tg} \varphi+c_{\mathrm{st}} \tag{1}\\
\tau & =\sigma \operatorname{tg} \varphi+c \tag{2}
\end{align*}
$$

При визначенні параметрів міцності прийнято наступне: кут внутрішнього тертя Ірунту при закріпленні ПЦЕ не змінюється; структурне зчеплення незакріпленого

Рис. 5 Стендовий прилад СПЗ-1 для одноплощинного зрушення: 1 - металева станина; 2 - динамометр визначення вертикального зусилля 3 - гідравлічний домкрат; 4 - кільце з нижньою рухомою частиною; 5 - динамометр визначення горизонтального зусилля; 6 - прогиномір; 7 - нерухомий упор; 8 - гвинтовий домкрат; 9 - "лапка" для передачі горизонтального навантаження; 10 - штамп; 11 - рухома каретка

Рис. 6 Зразки закріпленого грунту: $1-2,6 \%$ (9 ЦЦ);
2 - 4,4 \% (15 ЦЕ); 3-4,4 \% (19 ЦЕЕ)

ґрунту порушеної структури дорівнює 0 . При розв’язанні рівнянь (1) i (2) були визначені характеристики міцності незакріпених та закріплених грунтів, значення яких наведено в табл. 2.

За результатами стендових випробувань також були побудовані графіки залежності міцності закріплених грунтів від проценту армування i, рівняння яких залежно від виду грунту такі:

- для Ірунту № 1 - суглинку лесованого з числом пластичності $I_{p}=0,09$:
$c_{s t}=2,16 i(r=0,98)$ - структурне зчеплення, кПа;
$c=2,73 i+10,23(r=0,95)-$ довготривале зчеплення, кПа;
- для грунту № 2 - суглинку лесованого з числом пластичності $I_{p}=0,11$:
$c_{s t}=2,86 i(r=0,999)-$ структурне зчеплення, кПа;
$c=6,74 i+16,88(r=0,998)$ - довготривале зчеплення, кПа.
Проведені лабораторні та стендові випробування закріплених лесованих просадочних грунтів з числом пластичності $I_{p}=0,09 ; 0,11$ на одноплощинне зрушення показали, що при збільшенні кількості елементів закріплення у масиві, а відповідно й збільшенні процента армування як структурне, так і питоме зчеплення зростають. При цьому кут внутрішнього тертя для закріпленого грунту порівняно з незакріпленим залишається незмінним або зростає на $1-2^{\circ}$ (табл. 1, 2).

Залежності структурного $c_{s t}$ та довготривалого с зчеплень закріпленого грунту від процента закріплення $i \in$ лінійними й описуються рівняннями

$$
\begin{align*}
& c_{\mathrm{st}}=n i+c_{\mathrm{s} . \mathrm{st}} \tag{3}\\
& c=m i+c_{\mathrm{s}} \tag{4}
\end{align*}
$$

де $c_{s t}$ - структурне зчеплення закріпленого масиву грунту, кПа; c - довготривале зчеплення закріпленого масиву ґрунту, кПа; $c_{\text {s.st }}$ - структурне зчеплення грунту (soil), кПа; c_{s} - довгот-ривале зчеплення грунту, кПа; i - процент армування, \%; n, m - емпіричні коефіцієнти, кПа / \%.

Результати лабораторних і стендових випробувань на одноплощинне зрушення показали, що значення структурного зчеплення для досліджуваних грунтів при рівному проценті армування приблизно однакові. Хоча характеристики міцності, визначені шляхом стендових випробувань, менші за лабораторні, чим і підтверджується масштабний ефект: при збільшенні розмірів зразків значення характеристики зменшуються. Близькість результатів дає право побудувати за всіма дослідними точками графік залежності структурного зчеплення від процента армування $c_{s t}=f(i)$, що поданий на рис. 7.

Узагальнююче рівняння, за яким можна визначати структурне зчеплення суглинку лесованого, що закріплений вертикальними ГЦЕ, виготовленими за бурозмішувальною технологією, з урахуванням формули (3) набуде вигляду

$$
\begin{equation*}
c_{\mathrm{st}}=2,05 i+c_{\mathrm{s} . \mathrm{st}}[\mathrm{\kappa} \Pi \mathrm{a}], \tag{5}
\end{equation*}
$$

де 2,05 - емпіричний коефіцієнт для суглинків лесованих із числом пластичності $I_{p}=0,09-0,11$, кПа $/ \%$.

Як відомо, повне питоме зчеплення зв'язних прунтів змінюється залежно від вологості та структури прунту. 3 огляду на результати дослідів із закріплення лесованих суглинків, не виявляється можливим виведення узагальнюючого рівняння щодо визначення довготривалого зчеплення закріпленого за бурозмішувальною технологією водонасиченого суглинку з числом пластичності $I_{p}=0,09-0,11$

Таблица. 2
Зіставлення характеристик міцності незакріпленого і закріпленого лрунту за результатами стендових досліджень

Процент армування i, $\%$	Грунт №1 $\left(I_{\mathrm{p}}=0,09\right)$ (порушена структура)		Грунт №2 $\left(I_{\mathrm{p}}=0,11\right)$ (порушена структура)	
	c_{st} кПа/			
φ_{1}, град.	c, кПа/ φ_{2}, град.	c_{st}, кПа/ φ_{1}, град.	c, кПа/ φ_{2}, град.	
0	$0 / 5,2$	$10,9 / 5,2$	$0 / 8,4$	$16,8 / 8,4$
2,6	$4,8 / 5,2$	$15,7 / 5,2$	$7,3 / 8,4$	$35,1 / 8,4$
3,0	-	-	$8,8 / 8,4$	$36,8 / 8,4$
4,4	$10,0 / 5,2$	$23,2 / 5,2$	-	-

Таблица. 3
Зіставлення міцності незакріпленого і закріпленого лрунту за результатами моделювання одноплощинного зрушення

$\stackrel{9}{4}$		Характеристики міцності			
		за структурною міцністю		за довготривалою міцністю	
		$c_{\text {st }}, \kappa$ кП	φ, град	c, кПа	φ, град
1	0	2,3	6	10,7	9
2	2,2	8,7	6	15,3	11
3	4,4	15,0	7	19,7	11
4	6,6	16,3	8	23	12

залежно від процента армування.

Також для визначення характеристик міцності закріплених грунтів проведено моделювання одноплощинного зрізу армованого грунту програмою "Plaxis 3D Foundation" y постановці просторової задачі з використанням пружно-пластичної моделі. Встановлено [8, 9], що результати моделювання і лабораторні дослідження мають високий рівень збіжності, а прийнята пружно-пластична модель грунту повністю відповідає умовам проведення лабораторних випробувань.

Розрахункова схема, що зображена на рис. 8, моделює зріз

Процент армування $i, \%$
Рис. 7 Залежність структурної міцності для суглинків із $I_{p}=0,09$ та з $I_{p}=0,11$ від процента армування

Рис. 8 Розрахункова схема зразка:
1 - верхня рухома та 2 - нижня нерухома частини зрізної коробки тисків. зразка грунту в приладі одноплощинного зрушення конструкції "Гідропроекту" ПСГ-2М. Зрізна коробка приладу циліндричної форми діаметром 71 мм, висотою 35 мм, складається з двох частин: верхньої - рухомої, нижньої - нерухомої, що забезпечується накладанням в’язей. Проміжок між рухомою та нерухомою частинами зрізної коробки становить 1 мм, як і при лабораторних випробуваннях.

При моделюванні досліджувався вплив процента армування ($i=2,2 ; 4,4$ та $6,6 \%$) на характеристики міцності. Закріплення зразків прунту ПЦЕ проводилося за схемами, які подані на рис. 1. Висота елементів приймалася 33 мм, що на 2 мм коротше від висоти зразка ($h=35$ мм), для того, щоб запобігти безпосередньому сприйняттю вертикального навантаження більш жорсткими елементами закріплення.
Моделювання одноплощинного зрушення проводилося для суглинку лесованого, світло-жовтого, високопористого, карбонатного, просадочного, з числом пластичності $I_{p}=0,09$, з вологістю $W=0,28$ (аналогічно лабораторним дослідженням). Вихідні дані при моделюванні системи "грунт - елементи армування" за умови пружно-пластичної моделі приймалися для:

- трунту: $\gamma=18 \kappa Н / \mathrm{m}^{3} ; E=5$ МПа; $c=11,8 \kappa \Pi а ; ~ \varphi=6^{\circ}$; $v=0,35 ; \psi=0$;
- грунтоцементу: $\gamma=18,2 \kappa \mathrm{\kappa H} / \mathrm{m}^{3} ; E=100 \mathrm{MПa}$; $c=100 \kappa \Pi a ; \varphi=7^{\circ} ; \nu=0,2 ; \psi=0$.
Після складання розрахункової схеми зразок автоматично був поділений на скінченні елементи різних розмірів клиноподібної форми (рис. 9). Далі проходило прикладання вертикального ($0,05,0,1$ та $0,15 \mathrm{MПа}$) і горизонтального

У результаті моделювання отримано дотичні напруження та відповідні їм деформації зрізу, за якими були побудовані графіки залежностей "дотичні напруження деформаціі" у логарифмічних координатах. Після обробки

ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ. БУДІВЕЛЬНІ ВЛАСТИВОСТІ ГРУНТІВ

Рис. 9 Сітка скінченних елементів для зразка з процентом армування $i=2,2 \%$ (7 ІЦЕ): а - загальний вигляд закрінленого зразка; 6 - вид зверху; в - поперечний переріз 1-1;1-грунт, 2 - елемент армування

щодо питомого зчеплення закріплених грунтів Також кути внутрішнього тертя за результатами моделювання більші, ніж за лабораторними дослідами. Незважаючи на вищевикладені відмінності між значеннями отриманих характеристик міцності грунтів, як лабораторні дослідження, так і моделювання показали позитивний вплив закріплення суглинку лесованого вертикальними грунтоцементними елементами. Особливо це стосуеться збільшення структурного зчеплення при збільшенні кількості елементів армування, в чому й проявляється ефект закріплення грунтів зсувонебезпечних територій.

Рис. 10 Графіки залежності зчеплення грунту від процента армування: 1 - за структурною міцністю; 2 - за довготривалою міцністю

$$
\begin{aligned}
& c_{s t}^{\text {nod }}=2,19 i+3,33(r=0,94)[\kappa \Pi a] ; \\
& c^{\text {Mod }}=1,88 i+10,98(r=0,99)[\kappa \Pi a] .
\end{aligned}
$$

графіків, аналогічно побудованим за результатами лабораторних досліджень, визначалися характеристики міцності закріплених грунтів (табл. 3).

За даними табл. 3 побудовані графіки залежності структурного та питомого (довготривалого) зчеплення від процента армування, які зображені на рис. 10 та описані відповідними рівняннями.

3 графіків (рис. 10) видно, що залежності між значенням структурного та питомого зчеплення й процентом армування мають лінійний характер. Відповідність залежностей установленому закону підтверджується коефіцієнтом кореляції $r>0,80$.

Порівнюючи результати лабораторних випробувань (табл. 1) та моделювання (табл. 3), бачимо їх відмінність. Значення структурного зчеплення за результатами моделювання виявилися більшими за відповідні результати лабораторних випробувань. Зворотна картина спостерігається

ВИСНОВКИ:

1. Запропоновано для уникнення розвитку зсувних деформацій, а отже, і появи зсувного тиску, виконувати поліпшення властивостей грунту, тобто збільшення його механічних характеристик, шляхом цементації за бурозмішувальною технологією. Закріплення грунтів повинно використовуватись в якості допоміжного заходу, а іноді й альтернативи найбільш поширеним методам стабілізації та попередження зсувів - спорудженню різних типів утримуючих споруд, таких, як підпірні стінки, контрбанкети тощо.
2. Встановлено, що при цементації грунтів, в результаті з'єднання частинок i агрегатів грунту цементом, виникає штучне структурне зчеплення. Грунтоцементні елементи, влаштовані за бурозмішувальною технологією, разом з незакріпленим грунтом утворюють єдиний масив грунту з поліпшеними механічними характеристиками, методів оцінювання яких досі не існує.
3. Доведено ефект закріплення лесованих суглинків шляхом їх армування грунтоцементом за результатами лабораторних і стендових випробовувань цих грунтів на одноплощинне зрушення. Підвищення міцності грунту при закріпленні грунтоцементними елементами відбувається більшоюмірою зарахунокзбільшення структурногозчеплення, при цьому водно-колоїдне зчеплення і кут внутрішнього тертя збільшується несуттєво; міцність закріпленого грунту, головним чином, залежить від процента армування.
4. Порівняння залежностей "навантаження - деформаціі", які отримані за даними моделювання за допомогою програмного комплексу PLAXIS й експериментальним шляхом, показало достатній збіг результатів. Це свідчить про правомірність вибору та використання пружно-пластичної моделі грунту.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Зоценко Н.Л. Закрепление оснований цементацией буросмесительным методом / Н.Л. Зоценко, И.И. Ларцева, В.И. Марченко // Труды Международ. конф. по геотехнике "Геотехнические проблемы мегаполисов". Т. 5. - М.: ПИ "Геореконструкция", 2010. - С. 1781-1788.
2. Богов С.Г. Исследование прочностных свойств грунтов, закрепленных цементными растворами по струйной технологии [Електронний ресурс] / С.Г. Богов // Реконструкция городов и геотехническое строительство. - 2000. - № 2.
3. Крисан B.I. Дослідження напружено-деформованого стану грунтового масиву, армованого грунтоцементними елементами, що виготовлені по струминно-змішувальній методиці: автореф. дис. канд. техн. наук.: 05.23.02 / В.І. Крисан. - Полтава: ПолтНТУ, 2010. - 24с.
4. Томаш Михальськи. Применение технологи JET GROUTING в целях обеспечения устойчивости стен тлибоких котлованов / Томаш Михальськи // Будівельні конструкції: міжвід. наук.-техн. зб. - К.: НДІБК, 2007. - Вип. 66. - С. 158-168.
5. Cesare Melegari. Introduction to the jet-grouting Methods // Seminar on jet-grouting Sin-gapore, 1997.
6. Larsson S. Mixing processes for Ground Improvement by Deep Mixing // Doctoral Thesis. Stockholm, 2003.
7. ДБН В.2.1-10-2009. Основи та фундаменти споруд. Основні положення проектування. - К.: Мінрегіонбуд України, 2009. - 104 с.
8. Борт О.В. Напружено-деформований стан системи "будівля - основа" в умовах зсувонебезпечних територій: автореф. дис. канд. техн. наук: 05.23.02 / О.В. Борт. - Полтава: ПолтНТУ, 2006. - 23 с.
9. Титаренко В.А. Прогнозування змінності характеристик глинистих грунтів при оцінці стійкості зсувонебезпечних схилів: автореф. дис. канд. техн. наук: 05.23 .02 / В.А. Титаренко. - К.: НДІБК, 2005. - 20 с.
