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Abstract—This paper addresses the problem of the robust stabilization of a nonlinear multivariable
time-invariant plant on a semi-infinite discrete time interval under arbitrary nonmeasurable bounded
additive disturbances. A guaranteed value of the quality criterion is given by the functional represent-
ing the weighted sum of the limiting norms of the control vectors and output variables. To generate
control actions, a controller containing a linear generalized inverse model and discrete-time integra-
tors is introduced into the feedback loop. Sufficient conditions for the robust stability of the control
system, as well as the conditions for the ultimate boundedness of all its signals (dissipativity condi-
tions), are formulated. A corresponding simulation example is presented.
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INTRODUCTION
The so-called inverse operator method, which was heuristically proposed in the pioneering works of

domestic researchers in the mid-1960s [2, 3], is known [1] to be an effective tool for improving the per-
formance of control systems over multivariable time-invariant plants under complete and incomplete
information about the characteristics of the plants and the uncontrollable disturbances acting on them.
This method is implemented by a controller based on an inverse model of a plant. It was found [1] that
this method can formally be reduced to solving classical inverse problems of dynamics [4]. The recent
results in this direction were presented in [5], where the optimal control systems based on a generalized
inverse (pseudoinverse) model of a linear multivariable time-invariant plant were considered given an
arbitrary matrix of gains for direct connections and interconnections on the assumption that the system
designer a priori knows the values of these coefficients.

Unfortunately, when solving a wide class of real-life control problems, some control decisions have to
be made under conditions of a priori uncertainty about the mathematical model of a plant. To deal with
this uncertainty, the robust control theory was developed. Robust control is known [6–8] to provide a
guaranteed value of a certain functional characterizing the performance of a control system over any plant
of a given family [9]. The fundamental results obtained in this field during the last two decades were sum-
marized in [7–10]. These monographs deal mostly with robust stability and robust stabilizability of con-
tinuous- and discrete-time linear systems.

Recently, many researchers have turned their attention to the robust control of uncertain nonlinear
plants. Particularly, in [11, Chapt. 10], some general robust control problems were solved for nonlinear
multivariable continuous-time plants. In [12], a new method was proposed for the steady-state robust
control of nonlinear continuous-time dynamic plants under conditions of uncertainty by using their
robust linear models. It is worth noting that the problem of stabilization of a nonlinear multivariable time-
invariant plant on a semi-infinite discrete time interval by using its fixed linear model under insufficient
a priori information about its steady-state characteristics was addressed in the early 1970s [13]. The results
of this work made a conceptual contribution to the development of a sufficiently general approach to the
robust stabilization of uncertain nonlinear multivariable time-invariant plants with linear feedbacks that
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was presented by one of the authors of this paper at the 19th IFAC World Congress [14]. This approach is
based on a concept whereby the matrix of a reference linear model of a nonlinear multivariable plant
undergoes pseudoinversion just as in the linear case, where the number of control inputs does not exceed
the number of output variables [5].

This paper extends the approach proposed in [14] by formulating new, sufficient conditions for the
robust stability of control systems over a certain class of nonlinear multivariable time-invariant plants with
fixed linear models. In contrast to other well-known solutions, these conditions are reduced to obtaining
the upper estimate for the norm of an interval matrix; this seems to be a far more adequate approach than
finding the upper estimate for the norm of a matrix characterizing the relative deviations of differential
gains from the corresponding elements of a matrix of a reference linear model over the whole unbounded
set of control vectors (as in [13, p. 17]).

Speaking of practical use, the results obtained in this work are intended mostly for designing multivari-
able control systems of continuous technological processes such as those described in [15, 16].

1. FORMULATION OF THE PROBLEM

Suppose that we have a nonlinear multivariable time-invariant plant operating on a semi-infinite dis-
crete time interval  with an m-dimensional vector  of output variables

measured at each nth time step and an r-dimensional vector  of controls (hereinaf-

ter,  denotes transposition). The output  and the control  are assumed to be related as
follows:

(1.1)

Here,  is a certain a priori unknown nonlinear vector function

(1.2)

 is the m-dimensional vector of additive uncontrollable disturbances (inferences), and
 is the infinite ordered set of nonnegative integers. Consider the case where the number r

of input variables  does not exceed the number m of output variables 

(1.3)

Following [13], we assume that each ith component of  , in (1.2) is a continuously dif-

ferentiable function of  Then, a significant assumption can be made that all r partial derivatives

of  remain uniformly separated from zero and bounded in  while preserving their signs
for all u from  This means that

(1.4)

It can be seen that, on assumption (1.4),  are infinite functions and

(1.5)

for all  All the bounds  and  in (1.4) are assumed to be known a priori.

As in [9], we assumed that, for each ith component  of the vector , the sequence
 gives rise to an infinite sequence of arbitrary modulo-bounded variables [7, 9, 10], i.e.,
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in this case,  are not necessarily known. (Using the notation accepted in the modern control theory,
constraint (1.4) can be rewritten as

(1.7)

where  denotes the space of all possible sequences of bounded scalar values  with the  norm:

see [9, p. 29].)
Consider the linear feedback system

(1.8)

(1.9)

which is based on a single-step iterative control strategy and stabilizes the output variables  on the given
levels  (  for all ); this system was proposed in [13, p. 19] for multivariable time-
invariant plants. Here, A is the  constant matrix of interconnections that depends in a certain way on
the matrix  of the so-called reference linear model of nonlinearity ϕ(u) [13, p. 25]. (The matrices A and

 are selected below.)

Without loss of generality, the components of the vector  are assumed to satisfy
the requirement

which is basically interpreted as  This means that  at least for one i.
It is also assumed that, for , there certainly is a solution of the vector equation

i.e., a solution to the system of nonlinear algebraic equations

, (1.10)

in the components of the vector  It is condition (1.5) that is necessary for a solution of system (1.10)
to exist.

The problem consists in finding, based on the assumptions made above about the nonlinearity φ(u),
the conditions that, first, guarantee the robust stability of the closed-loop system (1.1), (1.8), and (1.9) for
the whole family of possible nonlinearities satisfying interval constraints (1.4) at  and,
second, ensure the ultimate boundedness [6] in terms of

(1.11)

in the class of all possible sequences  of form (1.7).

2. PRELIMINARIES
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which is an  Jacobian whose elements are a kind of dynamic gains from the jth control  to the ith
output  (for all fixed ). Due to (1.4), the rank of this matrix, according to (1.3) and (2.1), sat-
isfies the condition

(2.2)

Suppose that a pair of vectors ue and  defines an equilibrium state  of the closed-loop
system (1.1), (1.8), and (1.9) under zero disturbances. Upon denoting a k-dimensional null vector by

,

it is easy to see that ue is a solution of the equation

(2.3)

which follows from (1.8) taking into account (1.1) and (1.9) at 
It is believed [13] that, if a nonlinear system (1.1), (1.8), and (1.9) has an equilibrium state under

 which is defined by (2.3), then the requirement

(2.4)

for any matrix norm  where  is an  identity matrix, is a sufficient condition for the asymptotic
stability of this system under arbitrary initial conditions. This requirement is essentially a condition for the
asymptotic stability of the whole control system comprising the nonlinear plant (1.1) with fixed nonlin-
earity  and the linear feedback (1.8) and (1.9).

Condition (2.4) implies that the stability of the system under consideration cannot be guaranteed if the
matrix  or  is rank deficient for at least one , i.e.,  or  Indeed, in
this case, at least one of r eigenvalues  of the matrix  becomes 1. This can be
verified using some remarkable properties of ranks, eigenvalues, and norms from matrix theory, particu-
larly, the property of the rank of the product of two matrices

which is implied by the Frobenius inequality [17, Part I, Subsect. 2.17.1], the property

of any ith eigenvalue  of an arbitrary matrix  for arbitrary   from  [17, Part I, Sub-
sect. 2.15.3], and the well-known relation

for any matrix norm [9, p. 260] that follows from Brauer’s theorem [17, Part III, Subsect. 1.6.5] and
Brown’s theorem [17, Part III, Subsect. 1.5]. Thus, the requirement

(2.5)

which refines (2.2), is necessary for condition (2.4) to hold.

It can be shown that, in the context of assumption (1.4), the requirement  for all 
which appears in (2.5), is met a priori for m = r if

(2.6)

Conditions (2.6), which are easy to test using a priori information about the boundaries of the elements
from the matrix B(u), expressed in terms of (1.4), are obtained by directly applying Hadamard’s theorem
(also known as the Levy–Desplanque theorem [17, p. 192]) to the matrix B(u) of form (2.1) (see also [18,
Subsect. 16.27]).
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Following [13], define a matrix  characterizing the relative deviations of the elements in the 
Jacobian B(u) from the elements in a certain fixed  matrix  of the reference linear model:

(2.7)
Then, as shown in [13, p. 27], if the matrix  in control law (1.8) is selected by the formula

, (2.8)
then the stability of the control system is guaranteed at the maximum possible degree of inadequacy of the
nonlinear plant and its linear model, which is expressed by the inequality

Formula (2.8) needs one significant refinement associated with a constraint on selecting the matrix ;
unfortunately, we failed to find the corresponding guidelines in [13]. The point is that the inversion of the
product  which is required to find the matrix  by this formula, is allowed only if the requirement

imposed on the  matrix  is met. However, under condition (1.3), this is possible only if

(2.9)

i.e., if  has full rank (see [18, Subsect. 4.41]).
Note that, for  and under condition (2.9), the right-hand side of (2.8) is nothing but a pseudoin-

verse matrix  which is defined as [18, Subsect. 6.46]
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Figure 1 shows the control system of a nonlinear plant that implements the control law (2.11) taking
into account (1.9). In this system, the controller is designed as a series connection of a generalized inverse
model (described by the transfer matrix ) and a discrete-time integrator (digrator), which carries out,
according to (2.11), the sum accumulation operation

where  is the vector output of the generalized inverse model, which is defined, according
to (2.11), as

(see Fig. 1). The equilibrium state of this system (in which ) is obviously given by the equation

(2.17)

which is obtained by substituting  for A in (2.3).
In a one-dimensional case ( ), with the digrator in the feedback loop, under zero disturbances

( ), the linear discrete-time control system always becomes an astatic one, i.e.,  if the

condition for its asymptotic stability is fulfilled.
Remark 1. It is interesting that, in the case of a nonlinear multivariable discrete-time system where

 the similar limit property  a priori holds only if  This is directly implied by the

equilibrium equation (2.17) for  Indeed, the kernel of the matrix  which appears in this equa-
tion, has the dimension  [17, Subsect. 3.1.5], and the steady-state
equilibrium  of this system, in the limiting case, for , should satisfy the condition

 due to (2.17). Since, according to (1.9) and taking into account (1.1), for ,
the steady-state error is defined as  this certainly implies that  However, if 
then  In this case, the equilibrium equation (2.17) can theoreti-
cally be satisfied even if  Thus, for , the presence of the digrator in the feedback loop by no
means guarantees the astatism of the closed-loop control system (1.1), (1.9), and (2.11).

3. MAIN RESULTS

First, consider a case where  Following [9, Subsect. 6.1], select the elements of the matrix  for
the reference linear model:
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Such a selection gives rise to the -dimensional vector

which is formed by stretching the  matrix  into a column (as in [9, p. 220], any vector obtained by

the matrix P is denoted by ). This vector is practically a Chebyshev center of the bounded uncer-

tainty set

which, according to (1.4), includes any vector

Based on (2.13) and taking into account (2.1), for the elements  of the matrix , we have

(3.2)
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because, according to [18, p. 104], the matrix norm  possesses the property

for any fixed  and

However, if (3.7) holds, then the set of matrices B(u), for which  is a priori a set of nondegen-
erate matrices (see [9, Lemma 7.2]). Moreover, in this case,

(3.8)

because, due to the well-known property of matrix norms (see, for example, [18, p. 103]), we can write

,
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theorem.

Theorem 1. Suppose that r = m and select a matrix  whose elements  are defined by expres-

sion (3.1). If  and condition (3.6) holds, then, under zero disturbances, the closed-loop sys-

tem (1.1), (1.9), and (2.11) at  is robustly stable for the whole family of nonlinearities ϕ(u), that
satisfy constraints (1.4).

Unfortunately, condition (3.6) in Theorem 1 sets excessively strict lower and upper bounds for the

admissible values of the elements  in  Moreover, Theorem 1 is valid only for those plants of
form (1.1) in which the number of output variables equals the number of control inputs.
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b(rr)

2i, j
Ξ

b(ĳ) − b(ĳ)   

b0

(rr)

b0

vecB0

R = 1/||B0  ||

(11)b (11)

−

b(11) b(11)
(u)

b(rr)
(u)

−

b(rr)

0

−

−

−1

R = rmax

−

−

Ξ



JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 5  2017

STABILIZATION OF A NONLINEAR MULTIVARIABLE DISCRETE-TIME 767

in such a way that requirement (2.9) is met. (For , condition (2.9) means that ) Suppose
that the system (1.1), (1.9), and (2.11) has an equilibrium state given by (2.17), and turn to the sufficient
condition (2.15) for the asymptotic stability of this system.

As the relation

where  is a matrix with elements  holds due to (3.2) and (3.3), condition (2.15) is necessarily
met if

(3.10)

where  is the row norm of the matrix. Now, using the definition

of the row norm of an arbitrary  matrix  (see [9, p. 259]) and taking into account that each

element in any ith column  of the matrix  runs through the values on the

interval  no matter what values are taken by the elements in the other  columns, con-
dition (3.10) can be rewritten as

(3.11)

where

(3.12)

Hence, the following theorem holds.

Theorem 2. Fix an arbitrary full rank matrix . Suppose that the basic assumptions (1.4) about non-
linearity ϕ(u) hold. Then, under zero disturbances, a closed-loop control system comprising a nonlinear
time-invariant plant (1.1) and a linear controller (1.9) and (2.11) is robustly stable for the whole family of
nonlinearities that satisfy the interval constraints (1.4) if this system has an equilibrium state and con-

dition (3.11) is fulfilled, in which q is given by (3.12) and  are given by (3.4).

Remark 1. The constraints   which appear in (1.4), are used to avoid the

case where inevitably , i.e., the asymptotic stability condition is not met a priori. The need for these
constraints can be explained by rewriting original inequality (3.10) as

which is done using the definition of the uncertainty set

which, obviously, should include the vector  where  It can be seen that the last inequal-

ity does not hold if  for all  because, in this case, the set  certainly contains a
null vector 0mr and, therefore, the set of matrices B always contains a zero matrix 0m, r (here, as in [17, p. 9],

and a  zero matrix is denoted by 0m, r).

It turns out that, for , the constraints mentioned above can be significantly weakened by substi-

tuting them with   Indeed, these constraints alone guarantee that 

Remark 3. In contrast to the general sufficient condition (2.15) for stability of the closed-loop sys-
tem (1.1), (1.9), and (2.11), which seems to be inadequate for practical use (to test this condition formally

requires searching through all possible vectors u from ), conditions (3.11) and (3.12) of Theorem 2 can
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be tested by searching through a finite number of values appearing on the right-hand side of (3.12) in the
nodes of a polytope of the constraints formed by inequalities (3.3). Meanwhile, by themselves, these con-

ditions limit the admissible deviations of  from  more strictly than condition (2.15). Indeed, the

maximization operation on the right-hand side of (3.12) assumes that each element  of the matrix 

can take any values within a certain range no matter what values are taken by the other  elements of

this matrix; in contrast, the elements  of the matrix  which appears in (2.15), can take only par-

ticular values (depending on ) within the same range .

To facilitate the test of the robustness condition (3.11) and (3.12), an approach similar to that proposed
in [9, Subsect. 4.5] for a superstable control system can be used, reducing this test to solving a series of
fairly simple linear programming problems. For this purpose, it is sufficient to introduce (see [9,
Theorem 4.15]), the auxiliary variables

which are linear forms with respect to the vectors  that allow us to transfer from

checking inequality (3.11) to solving some pairs of linear programming problems

(3.13)

under the constraints

(3.14)

Eventually, this approach leads to the following corollary of Theorem 2.

Corollary. Suppose that the conditions of Theorem 2 are fulfilled. If

(3.15)

where  and  are the solutions of linear programming problems (3.13) and (3.14), then a
control system of a nonlinear plant (1.1) with a linear feedback (2.23) is robustly stable.

Thus, when requirement (3.15) is met and , for any initial , it is guaranteed that sys-

tem (1.1), (1.9), and (2.11) tends to the equilibrium  with an unlimited increase in n, i.e.,

(3.16)

where the vector  satisfies (2.17). Of course, for , this tendency does not possess the
limit property (3.16). Nevertheless, the dissipativity (ultimate boundedness) of this tendency is guaran-
teed. This is proved in the following theorem.

Theorem 3 (on dissipativity). Under the conditions of Theorem 2 and on assumption (1.6), the non-
linear closed-loop control system (1.1), (1.9), and (2.11) remains ultimately bounded for  if
condition (3.11) is fulfilled; in this case,

(3.17)

(3.18)

where 

The proof is conducted in the Appendix.
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which directly implies that relation (1.11) holds. Therefore, the boundedness properties of the sequences

 and  (see Theorem 3) eventually provide a solution to the problem formulated in this paper.

Simulation example. Suppose that we have a nonlinear time-invariant plant with two control inputs 

  and two outputs   ( ) that is described by Eq. (1.1) in which the components of the
vector function (1.2) are defined as

(3.19)

where

(3.20)

Suppose that the following interval estimates are known a priori:

(3.21)

According to (3.19) and (3.20), taking into account (3.21), we find

(3.22)

It can be seen from (3.22) that all the partial derivatives of the vector function’s φ(u) components are

bounded; in this case,  and  preserve their signs for all  from  while

 and  reverse their signs (see Remark 2).

To illustrate this, Fig. 3 shows four nonlinearities    and  which

belong to family (3.21), and four derivatives  

 and  in the particular case where

(3.23)

Using estimates (3.22), as a matrix for the linear model of the plant with nonlinearities (3.20), accord-
ing to (3.1), we select

(3.24)

In this case, due to (3.5), we have

(3.25)

and ; thus,

(3.26)

By solving the four pairs of the linear programming problems (3.13) under conditions (3.25) taking into
account (3.26), we obtain
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Hence,

(3.27)

Expressions (3.27) directly imply that the conditions in the corollary of Theorem 3 are fulfilled. This

brings us to the following conclusion: if the matrix  has form (3.24), then a closed-loop control system
comprising plant (1.1) with the nonlinearity described by (3.19), (3.20) and a linear controller (1.9), (2.11)

with matrix  form(3.26) is robustly stable for the whole family of nonlinearities given by the inter-

val estimates (3.21).

To support this conclusion, the control system (1.1), (1.9), and (2.11) with nonlinearity parameters

(3.23) was simulated under  and  In the simulation experiments, we assumed

that  and  The disturbance sequences  were simulated as sequences of

pseudorandom numbers uniformly distributed on the interval [–1, 1].

The results of the experiments (each being 50 clock periods long) under zero and limited disturbances

are presented in Figs. 4 and 5, respectively, where 

Figure 4 shows that the linear pseudoinverse-based controller (1.9) and (2.11) ensures the stability of
the control system over the nonlinear plant (1.1) under interval uncertainties about the parameters of non-
linearity ϕ(u). Figure 5 shows that the controller successfully copes with uncontrollable bounded distur-

bances, keeping the vector of output variables yn in the neighborhood of the point y0.
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CONCLUSIONS

In this paper, a robust stabilization problem has been considered for a particular class of nonlinear mul-
tivariable discrete-time time-invariant plants subjected to nonmeasurable bounded additive disturbances.
It is assumed that the steady-state characteristics of these plants are a priori uncertain, and only the
boundaries of the possible values of the elements in the corresponding Jacobian matrices are known, with
these boundaries having the same sign for all elements of these matrices. A controller has been designed
that consists of two series-connected blocks: a linear pseudoinverse model with fixed parameters and a
discrete-time integrator. Sufficient conditions for the robust stability of a closed-loop linear-feedback
control system over uncertain nonlinear time-invariant plants have been formulated. The estimates have
been obtained for the dissipativity region of these systems under arbitrary bounded disturbances.

A numerical example and simulation results have been presented that illustrate the proposed approach
to designing robust control systems based on fixed linear models of nonlinear multivariable time-invariant
plants operating under conditions of limited uncertainty.

Fig. 4. Behavior of control system under zero disturbances.
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Fig. 5. Behavior of control system under limited disturbances.
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APPENDIX

Proof of Theorem 3. Based on (1.1), (1.9), and (2.11), due to (2.17), the motion equation of the system

in deviations from the equilibrium ue takes the form

(A.1)

By the condition of the theorem,  is a function differentiable with respect to the components

 of the vector u. Therefore, according to [19, p. 17], the following relation for its increment

holds:

(A.2)

where  is a matrix of form (2.1) with the elements  

By substituting (A.2) into (A.1), we obtain

(A.3)

With (A.3) and  (due to Lemma), we can write

(A.4)

Here,  is given by expression (3.12), while

(A.5)

(due to constraints (1.6) and by the definition of the  norm [18, Subsect. 14.26]; see also [17, p. 260]).

Now, with (A.4) and  we obtain the chain of inequalities

(A.6)

Based on (A.6), we can conclude that if condition (3.11) is fulfilled, then the  norm of deviations of

 from ue for  is, in the limiting case, an upper-bounded sum of a certain infinitely decreasing geo-
metric sequence with a denominator q that is defined by the right-hand side of (3.17). To complete the
proof, we only need to make sure that relation (3.18) holds. For this purpose, Eq. (1.1) is rewritten as

(A.7)

taking into account that  Then, using the inequality

which is implied by (A.2), based on (A.7), and taking into account (A.5) and the well-known triangle
inequality [18, Subsect. 14.20], we obtain

Due to (3.17), this leads directly to relation (3.18). The theorem is proved.
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