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Abstract 
 

In this work, the symmetry properties of the system of equations of the theory of penetration, which describes the adiabatic motion of an 

inviscid compressible fluid, are investigated. Maximal invariance algebras of a class of systems that describe the adiabatic motion of an 

inviscid compressible fluid in the absence of mass forces and in their presence are found. The paper shows that for a given system one 

can observe a similar effect of the absence and presence of axial symmetry the same as for the known equations of mathematical physics, 

for example, the Schrödinger equation. It was established that in the absence of axial symmetry, this system is invariant with respect to 

the generalized Galilean algebra AG2 (1, n) with a fixed power nonlinearity, and in the presence of axial symmetry the system is 

invariant with respect to the generalized Galilean algebra AG2 (1, n-1) with arbitrary power nonlinearity. 
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1. Introduction 

In the study of various phenomena of nature often come to the 

mathematical models in the form of differential equations. With 

the emergence and subsequent development of the theory of 

differential equations, natural science received an effective means 

of modeling and researching various problems of science and 

technology. 

Phenomena that are studied in hydrodynamics, the theory of 

elasticity, electrodynamics, the theory of heat conduction, 

quantum mechanics, atomic physics, etc., are described by 

equations of mathematical physics. The methods of integrating 

differential equations began to be intensively developed after the 

appearance of the "Mathematical Principles of Natural 

Philosophy" by I. Newton in the process of studying the problems 

of world wide and the theory of light. The heyday of the methods 

of classical mathematical physics is associated with the names of 

J. Lagrange, L. Euler, J.L. d'Alembert, P.S. Laplace, D. Bernoulli, 

J. Fourier, M.V. Ostrogradsky, A.M. Lyapunov, S. Lee and many 

other researchers. One of these methods is the Sophus Lie method, 

which is based on the principle of symmetry. The method is based 

on finding and applying the operators of the invariance algebra 

(Lie symmetry) of a differential equation to find its exact 

solutions. Many researchers used and developed the theory of S. 

Lee [1-8].  

The principles of symmetry play a fundamental role in natural 

science. The laws of conservation of energy, momentum, angular 

momentum are the result of homogeneity, isotropy of four-

dimensional space - time. In relation to differential equations, 

symmetry can be considered as a principle, with the help of which 

only those with wide symmetry are selected from the most 

different logically acceptable models (equations, relations). This is 

primarily due to the fact that the basic physical laws, equations of 

motion, various mathematical models possess explicit or implicit, 

geometric or non-geometric, local or non-local symmetries. All 

classical equations of mathematical physics (Newton, Laplace, 

d'Alembert, Shredin-Ger, Liouville, Hole, Maxwell, etc. 

equations) are invariant with respect to fairly wide transformation 

groups. It is this property that distinguishes them from a variety of 

other differential equations. 

The construction of a constructive mathematical apparatus capable 

of identifying various types of symmetries is one of the most 

important tasks of the qualitative theory of differential equations. 

No less important is the task, in a certain sense, the inverse 

formulated above: for a given group of transformations, construct 

mathematical models (equations or systems) possessing the 

specified symmetry. This work is devoted to solving such urgent 

problems. 

2. Main body 

Consider the adiabatic motion of an inviscid compressible fluid 

with axial symmetry in the absence of mass forces. In this case, 

the equation of motion, non-interversion, and conservation of 

entropy of a particle have the form ([9,10]): 

 

1   
+ + = −

   

x x x
x y

w w w p
w w

t x y x , 

1   
+ + = −

   

y y y

x y

w w w p
w w

t x y y , 

0
    

+ + + + + = 
     

y y y

x y

w w w
w w

t x y x y y

  
  ,                     (1) 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


518 International Journal of Engineering & Technology 

 

0
  

+ + =
  

x y

S S S
w w

t x y
, 

 

where
xw , yw - particle velocity components,  - density, p - 

pressure, S – is entropy, t – is time, x, y – are spatial variables. 

We introduce the potential of the velocity field 
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. Then the system (1) will be written in this form: 
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Assuming that ( )=p f   and integrate the first two equations of 

system (2) with respect to x and y, respectively 

 

0 1,  ,  ,  l x x x y r S v= = = = , 

 

 as well as redefine then the system will take the form: 
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where ( )=F F  — smooth function such that 1−= −F f  . The 

three-dimensional Laplace operator in cylindrical coordinates is 

11 2

1 1
 =  +  +  + rr r

r r
 ,where 2 2

2 3= +r x x . 

In the case when the function has axial (cylindrical) symmetry, 

then 11

1
 = + +u rr ru u u

r
. 

Using these formulas, we write the system (3) for the case of three 

spatial variables, when u  does not possess cylindrical symmetry: 
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1

2
+ =a au u u F  ,  

0 0+ =a av u v , 

0 0,  1,3+ +  = =a au u a   .                                                        (4) 

 

Obviously from the system (4) when 0=u  the system (3) is 

obtained. 

2.1. Adiabatic motion of an inviscid compressible fluid 

in the absence of mass forces.  

Let us generalize system (3) for the case of an arbitrary number of 

spatial variables with such a system: 
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ur

K - arbitrary constant. 

Consider and solve the problem: to investigate the symmetry 

properties of systems (4) and (5) depending on the type of 

function ( )F   in the case of an arbitrary number of spatial 

variables  nx R
r

. 

First consider the case 0=N . 

Theorem 1. The maximum invariance algebra of the system of 

equations: 
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is an algebra: 
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where m , n ,  - arbitrary constants, in cases 1 and 5 of the  

( )1 1=  v  , ( )2 2=  v   - arbitrary smooth function. 

Consider the case when 0N . The result of research on the 

symmetry properties of system (5) is the following theorem. 

 

Theorem 2. The maximum invariance algebra of the system of 

equations (5) is algebra: 
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The proofs of Theorems 1 and 2 will be carried out 

simultaneously. According to the Lie criterion, acting the second 

continuation of the infinitesimal operator on each of the equations 

of system (5), taking into account the transition to the variety of 

system (5), after splitting by derivatives, we obtain the system of 

defining equations: 
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where 1, , 1, , 1, 1a n b n i n= = = − . The solution of equations (7) is 

the functions:  
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2
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where , , ,ad   −ù  arbitrary functions of its arguments, 

( )abC a b - arbitrary constant. 

Substituting functions (10) into system (8) we obtain: 

 

( )0 , , = − +in i n

n n

N N
C x d x v

x x
                                                    (11) 

 

where ( )0, −x v  arbitrary function. 

If we substitute (10) and (11) into equation (9), then we obtain the 

equation: 
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0
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0,Nd = 0,nNd F = ( )0
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We investigate the last equation (12). Having studied its structure 

with respect to the function F and the variable  , we conclude 

that there are four nonequivalent cases: 

 

1. arbitrary smooth function;F −  

2. ln ,F  = ,const = 0;   

3. ,mF = , ,m const = , 0;m   

4. 0F = . 

 

We consider only cases 1 and 3. The proof for cases 2 and 4 is 

carried out similarly.  

Let F be an arbitrary function. Then equation (12) sets the 

conditions: 
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It is obvious that solution (13) depends on the value of the 

constant N. 

Let N = 0. Then from (13) we get: 
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Substituting (11), (13), (14) into (10), we obtain the coordinates of 

the infinitesimal operator 0 , 1, 1, 2 , 6 , that define the 

algebra A in Theorem 1. 

When N ≠ 0. Then from equation (13) we get: 

 

0,inC = 0,n nl k= = 1 0,c = 4 2,c c= − 6c = .                           (15) 

 

Substituting the functions (11), (13), (15) into equations (10), we 

obtain the functions 0 , 1, 1, 2 , 0 ,  that define the algebra A 

in Theorem 2. 

Let 
mF =  Then equations (12) set the conditions: 

 
2

1 0 2 0 3,c x c x c= + +ù ( )0 2

1 0 2 4 0 52 2 ,c x c c x c = + + + 0 ,a a ad l x k= +  

0,inNC = 0,nNl = 0,nNk =                                                  (16) 

 

( )1 1 0 2 4

2 2
0, 2 0.c n N c x c c

m m
 

 
+ − = = − − − = 

 
 

 

Solution (16) depends on the value of the constant N. 

When N = 0 from (16) we get: 
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Equation (17) defines two cases: 

1. When 
1 0c = , then substituting functions (11), (16), (17) into 

(10) we obtain the coordinates of the infinitesimal operator, which 

define the algebra 
2A  in Theorem 1; 

2. At 
2

n
m

=  functions (11), (16), (17) в (16) define the algebra A3 

in Theorem 1. 

When 0N    from (16)  we get: 

 

0,inc = 0,n nl k= = 6,c = 1

2
0c n N

m
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Equation (18) defines two cases: 

1. When 
1 0c = , then substituting functions (11), (16), (17) into 

(10) we obtain the 0 , 1, 1, 2 , 0 ,  which define the algebra 

2A  in Theorem 2; 

2. At 
2

+ =n N
m

 functions (11), (16), (18) в (10) set algebra 
3A  

in Theorem  2. 

Theorems 1, 2 are proved. 

Remarks. From the symmetry properties of the system (6) it 

appears that in the case when this system has the form: 
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1
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2
nu u +  =

0 0,v u v+  = 0 0u u  +  +  =     (19) 

 

it is invariant under the generalized Galilean algebra ( )2 1,AG n . 

From the symmetrical properties of system (5), it follows that in 

the case when this system has the form: 
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1
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2
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2
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it is invariant under a generalized Galilean algebra with an arbi-

trary degree  m, but its invariant algebra is a generalized Galilean 

algebra ( )2 1, 1−AG n . 

 

2.2. Adiabatic motion of an inviscid compressible fluid 

in the presence of mass forces. 
 

The system of equations describing the adiabatic motion of an 

inviscid compressible fluid with axial symmetry in the presence of 

mass forces is similar, as in the previous paragraph, to the follow-

ing system: 
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where ( ) ( ), 0F F G G = =   arbitrary smooth functions, N - 

arbitrary constant.  

Let us classify the symmetry properties of system (21) depending 

on the type of the functions F and G. The following statements are 

true. 

Theorem 3. The maximum algebra of invariance of the systems of 

equations (21) subject to the condition 0N =  is algebra: 
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where ,m
1,m ,

1, 2 , 3, 4  – arbitrary constants, in cases 

1 and 4 ( )v =  – arbitrary smooth function. 

Theorem 4. The maximum invariance algebra of systems of 

equations (21), provided that 0N   it is an algebra: 
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where ,m
1,m ,

1, 2 , 3, 4  – arbitrary constants, in cases 

1 and 4 ( )v =  – arbitrary smooth function. 

The proofs of Theorems 3 and 4 will be carried out 

simultaneously. The system of defining equations for system (21) 

will consist of equations (7), (8) and equations:  

 

( )1 1 0 0

0 0

0
0 0 1 1 1 1 0

0 1

,

2 .

u

u n u

n

F F

N
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As shown in the proof of Theorems 1 and 2 by solving equations 

(22)  there are functions: 

 

( )0 2
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( )1 2
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( )2 2 ,v =  

( )0

0 , ,in i n
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N N
C x d x v

x x
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where ( )1 2 3 4 5, , , , , , , ,ab a ac c c c c C a b l k −  arbitrary constants, 

2, ,   − arbitrary functions of their arguments. 

If we substitute (23) into equation (22). then we get the conditions: 

 

0, 0,n nNl F Nk F= = ( )1 0 2 42 2 ,F c x c c F = + + +  

( ) 0,inNC G G− = ( ) 0,nNl G G− = ( ) 0,nNk G G− =      (24) 

( ) ( )
0 1 1 0 2 42 2 .x n N c Ac x c c G G     + + + − − − + =  

 

The second equation of system (24) was investigated in the proof 

of Theorems 1, 2, where it was shown that the symmetry of the 

original system differs significantly only if: 

1. F – arbitrary smooth function. 

2. ln , , 0.F const   = =   

3. , ,  , ,  0.F m const mm  = =   

4. 0F = . 

We consider only cases 1 and 3. The proof of cases 2 and 4 is 

carried out similarly. 

Let F be an arbitrary function. Then equation (24) set the 

conditions: 

 

( )
1 2

2

4 0,

0, 0.

n n

in

Nl Nk c c c

NC G G c G

 



= = = = + = =

− = =
                              (25) 

It is obvious that solution (25) depends on the value of the 

constant N. 

Let be 0N = . Since the case 0G = considered in Theorems 1 

and 2, in what follows, we assume that. 0G  .Then from (25) we 

get: 

 

1 2 4 60, ,c c c c = = = = =                                   (26) 

substituting N = 0 and (26) in (23), get the coordinates of the 

infinitesimal operator 0 1 1 2 0, , , , ,      that defines the algebra A3 

in Theorem 3. 

At 0N   then from (25) it follows that:  

 

1 2 60, ,n nl k c c c = = = = = = ( ) 0inC G G− = .                 (27) 

When solving the second equation (27) there are two cases:  

1. 0,inC =  and function G is arbitrary. Then using (27), will get 

0 1 1 2 0, , , , ,      defining algebra A in Theorem 4 

2. 0,G G− =  When G = . In this case, the replacement 

0 ,
x

e
 =  system (21) reduces to system (5), whose symmetry 

properties are investigated in Theorem 2. 

Let ,mF = , 0m  . Then equation (24) sets the following 

conditions: 

 

( )0, 0n n inNl Nk NC G G = = = − = , 
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( )1 0 2 4

2
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m
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1
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( )2 4 2 4 1

2 2 2 2
2 1 2 .c c G c c G c n N

m m m m
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We investigate the structure of the last equation (28) with respect 

to the function G and the variable. Depending on the relationship 

between the coefficients 1 2 3, ,k k k of the structural equation 

1 2 3 ,k G k G k = +  we get three nonequivalent cases: 

1. G – довільна функція 

2. 1 2 1 2 1ln , , , 0G const       = + =   

3. 
1

1 2 1 2 1 1, , , , 0, 0,1.mG m const m      = + =  
 

Consider each of the cases obtained. 

When G is an arbitrary function, with (28) we get the following 

conditions: 

1 2 4 61. 0, 0, , 0;N c c c c = = = = = =  

1 2 4 62. 0, 0, 0, 0, , 0;n n inN l k C c c c c = = = = = = = = =  
 

after substitution of which in (4.23) we obtain the coordinates of 

the infinitesimal operator 0 1 1 2 0, , , ,     defining algebras A in 

Theorems 3 and 4, respectively. 

Let 1 2 1ln , 0.G      = +   When 1 0   system (21) reduce to 

replacement 1 0x
e
 =  to system (5), whose symmetry properties 

are investigated in Theorems 1 2. 

After substituting the function G into equation (28), we have the 

following conditions: 

 

6 1 4 20, 0, , 0n n inNl Nk NC c c c c= = = = = = = .                       (29) 

 

Solving. (29) depending on the value of N, we obtain two cases: 

 

1 2 4 61. 0, , 0c c c c = = = = = , if 0;N =  

1 2 4 62. 0 0, , 0n n inc c c l k c C == = = = = = = = , if 0.N   
 

After substitution of which into (23), we obtain the coordinates of 

the infinitesimal operator 0 1 1 2 0, , , , ,     defining algebras in 

Theorems 3 and 4, respectively. 
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Consider the case when  1 2 1 1ln , 0, 0,1.G m     = +     

At 
1 0 = and 

1 0,m = or 
1 1m =  system (21) is locally equivalent 

to system (5), whose symmetrical properties are investigated in 

Theorems 1, 2. 

Substituting the function G in equation (28), we get: 

 

( )1 60, 1 0, ,n n inNl Nk NC m c= = − = =  

( )11 0,nNl m− = ( )11 0,nNk m− =  

( )1 0 2 4

2
2 ,c x c c

m
 = − − −                                                          (30) 

( )1 1 21 0, 0,c m m − − = =

( ) ( )1 2 1 4 1

2
2 1 2 2 0, 0m m c m m c c n N

m

 
− − + − − = + − = 

 
. 

When solving (30), there are two different cases: 

1 0, 0,n nc Nl Nk= = = ( )1 61 0, ,inNC m c− = = ( )11 0,nNl m− =

( )11 0,nNk m− = ( )2 4 2

2
, 0,c c

m
 = − − =                                (31) 

( ) ( )1 2 1 42 1 2 2 0m m c m m c− − + − − =  

2
,m

n N
=

+
1 2 11, 0, 0,m m c= + = =  

0,n nNl Nk= = 60, ,inNC c= = 0,nNl = 0,nNk =                  (32) 

( )( )1 0 2 42 .n N c x c c = + = − −  

 

When solving equations (31) and (32) depending on the values  

1,N m and m , three more ramifications arise: 

1. If 
1 1m m= + .  

( )1 6 2 4 2

2
0, , , 0,c c c c

m
  = = − − − = 4 ,c  when 0;N =       (33) 

1 60, 0, 0, ,n n inc l k C c= = = = = ( )2 4 2

2
, 0,c c

m
 = − − =     (34) 

4 0,c = when 0.N   

 

When to substitute (33) and (34) into (23), we obtain the 

coordinates of the infinitesimal operators that define algebras A5 

in Theorems 3 and 4, respectively; 

2. If
1 1m m + . When 

1 60, ,c c= =   

( )2 4 2

2
, 0,c c

m
 = − − =                                             (35) 

( )
1

2 4

1

2 2
,

2 1

m m
c c

m m

+ −
=

− −
at 0N =  

1 0,c = 0,n nl k= = 0,inC = 6,c =                                  

( )2 4

2
,c c

m
 = − − 2 0, =                                            (36) 

( )
1

2 4

1

2 2
,

2 1

m m
c c

m m

− −
=

− −
 at 0N   

Then, after substituting (35) and (36) into (23), we obtain the 

coordinates of the infinitesimal operator, which define the 

algebras A6 in Theorems 3 and 4, respectively: 

3. At 1

2
, 1m m m

n N
= = +

+
 we get:                                  (37) 

2 4 60, 0, ,c c = = = ( )1 0 2 42 ,n c x c c = − − − if 0N =  

and 

2 0, = 4 0,c = 0,n nl k= = 0,inC = 6,c =                       (38) 

( )( )1 0 2 42 ,n N c x c c = + − − − if 0N  . 

Substituting (37) and. (38) in (23) we obtain the coordinates of the 

infinitesimal operator that define the algebras in Theorems 3 and 4, 

respectively. 

Theorems 3, 4 are proved. 

 

Remarks. The system of equations (21) under the condition  
0N =  is invariant with respect to the generalized Galilean 

algebra, if it has the form: 

 

( )
2

2

0 1

1
,

2
nu u  +  =  

0 0,v u v+  =                                                         (39) 
2

1

0 2 ,nu u    
+

+  +  =  

where 
1 2,  - arbitrary constants. 

In the case when 0N  , system (21) is invariant with respect to a 

generalized Galilean algebra ( )2 1, 1AG n −  with an arbitrary 

power nonlinearity: 

( )
2

0 1

1
,

2

mu u  +  =  

0 0,v u v+  =                                                         (40) 

1

0 2 ,m

n

n

N
u u u

x
     +

 
+  +  + = 

 
 

where 
1,  

2 ,  ,m  N –  arbitrary constants, where
2

,N n
m

= −   

but the dimension of this algebra is one less than the dimension of 

the invariance algebra of system (39). 

3. Conclusion  

Systems of equations (6) and (21) describe the adiabatic motion of 

an inviscid compressible fluid and are widely used in penetration 

theory. In this paper, for the first time, the maximal algebra of 

invariance of systems that describe adiabatic motion in the 

absence of mass forces, as well as in their presence, is found. 

Nonlinearities are found at which these systems are invariant with 

respect to the generalized Galilean algebra in cases with and 

without axial symmetry.  

Note that the results obtained echo the known results for the 

classical equations of mathematical physics. Namely, for example: 

[2, 11] nonlinear wave equations ( ) ,u F x u= , [3,12] nonlinear 

Schrödinger equations ( )0 ,i F x  + = . These equations 

contain an arbitrary power nonlinearity, but their maximal 

invariance algebras have a dimension one less than the equations 

themselves. In our work, it is shown that a similar situation is 

observed for systems (6) and (21). 
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