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Abstract.  
 

The paper deals with summarizing research concerning analytical technique of calculation of vertical cylindrical capacities for grain stor-

age under the influence of unsymmetrical wind influences. In particular, the analysis of vertical stiffeners’ work was conducted and illus-

trated the body deformation for high and low capacities, depending on the number of rigid elements. Considering the construction’s 

form, which is an axially-symmetric shell of rotation, the main equations for determining efforts, displacements and the series of calcula-

tion coefficients were formed. Considering the character of the wind load’s influence, there were also made propositions considering 

defining normal and tangential strains in cross-section, longitudinal directions and also radial, circular and longitudinal displacements, 

accordingly to the general theory. was made The graphical nomograph for the convenient calculation, which could be used as an alterna-

tive when searching for intermediate calculation functions was made. In addition, capacities with different edges’ fortification are con-

sidered, for example, strengthened by absolutely rigid circle, free or fixed by elastic circle. General assessment of the total deflected 

mode of the capacity’s construction was made, depending on the number of decomposition coefficients, which were put in calculation. 

Conclusions are accompanied with graphic isometric understandings, which were obtained on the basis of practical calculation. 
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1. Introduction 

Vertical capacities for grain storage refer to the thin-walled con-

structions, which have increased sensitiveness to the wind load. In 

such cases complexity of learning of construction’s behavior is 

stipulated by asymmetric allocation of loads, which are inherent to 

the given influences. The most precise method for determining full 

spectrum of internal efforts and displacements of the capacity’s 

construction is the finite element method, which is recommended 

to be used in practical calculations. The majority of the scientific 

researches about this question are also based on using 3D finite 

element models, which is absolutely relevant and effective solu-

tion [1, 2, 3, 4]. But formation of the alternative analytical tech-

nique is an important procedure, which in future could be used for 

preliminary assessment of the project solution or solving a series 

of adjacent problems. Besides, obtained results are the landmark 

for the designer, which in future allow avoiding technical errors 

and probable inaccuracies when making computer model of the 

FEM. 

2. Work of the Vertical Rigid Elements 

Wind load at the silos received by stiffeners and the body, which 

in general case are an axially symmetric shell of rotation for cy-

lindrical capacities. Changing of the internal efforts pN , pM  in 

vertical stiffeners and their radial deflection zw , first of all, de-

pends on the number of elements of rigidity pn  correspondence of 

the overall dimensions w w wН D =  (maximum height to the 

diameter of cross-section) and the method of fortification of points 

of the finite-element method. The character of this dependence 

will be determined by extent of the zone of edge effect on the ends 

of the shell. For sections enough remote from the points of stiffen-

ers’ fortification the lines of capacity’s deflection under the influ-

ence of asymmetric load will be look like as on the fig. 1. This 

image of deformation is more inherent to high flexible capacities. 

 

Fig. 1: The character of high capacities’ deformation under the influence 

of the wind load: (a) without stiffeners; (b) 5pn = ; (c) 50pn =  
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Near the bearing zone the line of deflection has another form (fig. 

2), which is the characteristic feature for buildings of small aspect 

ratio, where the edge effect is spread at almost all height. 

 

Fig. 2: The character of low capacities’ deformation from the flat sheets 

under the influence of the wind load: (a) 5pn = ; (b) 40pn =  

For analytical determination of the effort pN  in every stiffener at 

the z  level from its top we could use the formula 

 

( ) /p w pN z gD z n= ,          (1) 

 

where g  is the intensity of the compressing load. 

The given expression is not considering compatible work of exter-

nal framework with covering and provides a certain supply in 

assessment of the numerical values. 

3. Deflected Mode of the Body Sheets 

Using of the general precondition that all efforts of compression 

are perceived only by vertical stiffeners, we can equate to zero 

meridional and circular strains in the sheets of capacity’s body and 

assume that they work only for axially symmetric and asymmetric 

radial loads. Considering that the form of the capacity’s storage is 

a shell without abrupt changing of geometric, the problem of de-

termining strains and deformations of such shell under the influ-

ence of axially symmetric load ( )p x  reduces to solving the dif-

ferential equation [5-9] 

 

( )
( )

( )4
4

4
4 w

r

d w x p x
k x

Ddx
+ = ,           (2) 

 

where rD  is a cylindrical rigidity of shell at the bend in circular 

direction; ( )w x  is a function of the body displacement of the 

shell; wk  is a coefficient that could be defined by expression 

( )4 2
w w w rk Et D D= ; E  is a modulus of the material’s elasticity; 

wt  is a thickness of the shell. 

Calculation of the body sheets under the unsymmetrical semi-

uniform load, to which the wind influence refer, has a certain fea-

tures. First of all, accordingly to the momentless theory, determi-

nation of the deflected mode of a shell as in the case of axially 

symmetric load could be conducted by the simplified procedure. 

The more precise analytical solution is the use of equilibrium 

equations of the general theory, which allow considering the influ-

ence of internal bending moments in sections. But in practice 

these calculations are pretty difficult and demand a series of sim-

plifying procedures. 

Considering the wind influences, their action is schematized in the 

form of radially attached external load, which is changing in the 

cross-section accordingly to the diagram of the wind pressure. In 

the longitudinal direction wind load is considered as an equally 

distributed. The problem of calculation of cylindrical capacity 

could be simplified by decomposing the asymmetric load into the 

finite trigonometric series. For the wind load cos( )k kW A k=  it 

will be cosine-series of the aerodynamic coefficient ( )aerC    
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where kА  is an amplitude value of the k  constituent;   is an 

angle of incidence, which considers the wind flow; ka  are the 

coefficients of decomposition. 

3.1. Momentless theory of shells 

Accordingly to the momentless theory, for cylindrical shell loaded 

by asymmetric wind load, the equilibrium equation will be 
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where ,h kN  and ,p kN  are the linear longitudinal efforts in radial 

and meridional (longitudinal) directions; kS  are the linear efforts 

of displacement. 

Full efforts from the wind load influence will be expressed in the 

form of a sum of formulas (5)-(6) accordingly to the acceptable 

number of m  members of the (3) trigonometric series 

 

( , ) sin( )k kS x kA x k = .          (5) 

 

2 2
,

cos( )
( , )p k k

w

k
N x k A x

D


 = .         (6) 

 

, ( ) cos( ) / 2h k k wN A D k = .           (7) 

 

We will get maximum values of efforts for functions ( , )pN x   

and ,( )hN  , if 0 =   
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where pw  is a calculated value of the wind load without consider-

ing the coefficient aerC . 

For efforts max ( )S x  the condition of maximum will be within the 

limits of max 37 ...41 =  
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The analysis of coefficients of the formulas (8)-(10) indicates that 

values h  and s  out of zone of the edge effect approach to some 

fixed value. It is explained by less dependence of the displacement 

effort and radial effort from the fluency of the load’s changing. 

Coefficient p  is changing in wide range depending on the ac-

ceptable number of terms of the m  series (3). Growing number of 

terms of the trigonometric series is causing more abrupt transition 

on the diagram of loads, consequently, the search of border value 

of the given coefficient could not be made by methods of moment-

less theory. 

We have to notice that conducted numeric analysis of normal 

strains in the body sheets from efforts ,maxhN  and maxS  revealed 

quite a small part of influence at the general spectrum of strains in 

the capacity, consequently, they could be not considered in calcu-

lations. 

In general case displacement of the capacity under the load kW  is 

determined when 
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where u , v  and w  are longitudinal, circular and radial dis-

placements of the body; / ( )wp p p w wA n D t =  is the relation of 

cross-sections’ squares of all the vertical stiffeners and capacity’s 

wall. 

Full displacements under the influence of the wind load are evalu-

ated by the way of addition accordingly to the isolated harmoni-

cas. For maximum values of displacements (if 0 = ) these for-

mulas are valid 
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where 
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+
 is a nominal deflection; pw  is a cal-

culated value of the wind load. 

3.2 The general theory 

When applying general theory, it is worth to outline the main un-

known constituents of the method, where will be also normal 

strains ,p k  in the capacity’s cross-section, tangential ,p k  in 

longitudinal and three main displacements, longitudinal ku  , radi-

al kw  and circular kv  (fig. 3) 

 

Fig. 3: The scheme of acting efforts in the body of the storage capacity 

Considering generalities [10, 11], all unknown efforts and dis-

placements from the load kW  could be expressed though a certain 

unknown function ( )k x , which fulfill the linear differential equa-

tion 
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 is a value, which considers 

rigid characterstics of the capacity within the given conditions of 

the k  harmonicas of the load (while 2k   ); k  is a parameter, 

which is responsible for the fluency of changing the harmonious 

load around the perimeter of the capacity; wJ  considers in-

creased bending rigidity of the corrugated sheet of the body; 

/Dt w wD t =  is the coefficient of geometric scale of the capaci-

ty. 

Solution of equation (13) will be 
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 is the function of non-

dimension height / wy x H= , for which we input the title of the 

reaction’s coefficient. 

The function ( )k y  characterizes one of the reaction’s parameters 

of the deflected mode of the capacity. For this purpose we could 

use the function of normal strains [11] or the function of the am-

plitude circular bending moments along the formative shell [10], 

which is more convenient for the mathematical transformations. 

Constant integrations could be get from the border conditions of 

the function ( )k y  for the capacity with one fortified and another 

free edge 

,0 ,( ) [1 ( )]k k m ky y  = − .         (15) 
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where 1,kM , 2,kM  and 3,kM  are the non-dimension functions of 

the capacity’s reaction; ,0k  is the coefficient of proportionality, 



International Journal of Engineering & Technology 25 

 
which has the dimension of the ( )k y  function and considers the 

character of harmonious load kW . 

We will get expressions for strains in cross-sections , ( , )p k y   

and , ( , )p k y    
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Radial ( , )kw y  , circular ( , )kv y   and longitudinal ( , )ku y   

displacements are determined accordingly to the functions 
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−
=  is the coefficient of the capacity’s 

compliance. 

Functions , ( )u k y , , ( )k y  and , ( )k y  are analogous by 

mathematical nature , ( )m k y  and determined by expressions of 

the first, second and third derivatives. Their introducing in formu-

las depends on the variant of the border conditions of fortification 

of the every edge (bounded by absolutely rigid circle, free or 

strengthened by elastic circle). Isometric function is illustrated on 

the fig. 4. 

We have to notice, that the displacement strains , ( , )p k y   are 

considerably less than normal , ( , )p k y  , consequently in the 

engineering calculations we could neglect them, and consider only 

near the basis of the capacity or in the place of conjugation with 

the upper circle. 

 

Fig. 4: Isometric introduction of the functions , ( )u k y  and , ( )k y  for 

capacities with absolutely rigid circle 

Accordingly to the given functions, practical calculation of the 

capacity is complicated by calculation of the indicators of the 

functions , ( )m k y , , ( )u k y , , ( )k y  and , ( )k y  by the given 

argument. Consequently, for their search it is convenient to use 

nomograms, which allow finding values of the mentioned func-

tions if it is given ,k  and y  (fig. 5). 

 
Fig. 5: Nomogam of the function , ( )m k y  for capacities with absolutely 

rigid circle 

4. Total Deflected Mode 

In general case total mode is defined as a sum of deflected modes 

of the k  influence, and depends on the number of coefficients of 

decomposition, which were put in calculations 
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where R  is a generalized parameter of the reaction 

pR w v u =      . 

Zero term of series (22) corresponds to the axially symmetric load, 

and, consequently, it does not cause any efforts in stiffeners. 

The second constituent 1 1a R  causes usual bend of the capacity. 

Bending moment 0( )M x , transverse force 0( )Q x  and deflection 

0( )w x  at the certain level x  in this case are defined as 
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Other terms of the series (22) if 2k   could be rewritten in the 

form of a sum of products of the certain value , ( )D kr y , which 

corresponds to the capacity’s reaction at the point ( ; 0)y  =  , at 

the cosine (sinus) of the function of the reaction’s changing ac-

cordingly to    

, ,

1 1

( , ) ( )cos( ) ( , ) ( )sin( )
m m

D D k D D k

k k

R y r y k R y r y k   
= =

=  =  . (25) 

Calculation of the capacity’s reaction is done in the table (table 1), 

and for the visual image the given parameter is convenient to be 

made in the non-dimension polar coordinates (fig 6). Similar ta-

bles unambiguously determine deflected mode of the capacities 

and they are the basis for making further design solutions 
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Fig. 6: Example of introducing the capacity’s reactions in the non-

dimension polar coordinates 

 
Table 1: Example of the amplitude’s calculation of the trigonometric 

series of reactions 
y  1  2  3  ... 7  8  9  10  

Amplitude values for longitudinal efforts in the vertical stiffeners 

0.0 0 0 0 ... 0 0 0 0 

0.1 0.1 0.8 1.2 ... 0 0.1 0 0 

... ... ... ... ... ... ... ... ... 

0.8 5.9 48.2 76 ... -1 -0.4 0 -0.1 

0.9 7.5 61 96.3 ... -2.1 -1.7 -0.3 0.2 

1.0 9.2 75.3 118.9 ... -3.6 -3.7 -0.7 0.9 

Amplitude values for radial displacements of the body’s points 

0.0 0.5 5 17.8 ... -1.3 -1 -0.1 0.1 

0.1 0.4 4.3 15.4 ... -1.2 -0.9 -0.1 0.1 

... ... ... ... ... ... ... ... ... 

0.8 0 0.4 1.2 ... -0.2 -0.2 0 0.1 

0.9 0 0.1 0.3 ... -0.1 -0.1 0 0 

1.0 0 0 0 ... 0 0 0 0 

5. Conclusions  

1. Wind influence at the storage capacities is characterized by 

unequal distribution around the perimeter of the cylindrical shell. 

In this case definition of the capacity’s deflected mode by using 

the analytical way could be made if the load is decomposed into 

the finite trigonometric series and the calculation is done for every 

constituent separately. The number of the chosen terms of decom-

position will affect both the precision, and the method of the fur-

ther problem solution. 

2. Accordingly to the momentless theory, the paper deals with 

convenient formulas for defining linear longitudinal efforts in 

radial and meridional (longitudinal) directions and efforts of dis-

placements. Conducted numeric analysis of normal strains in the 

body sheets revealed quite a small part of influence of ,maxhN  and 

maxS  at the general spectrum of strains in the capacity. Besides, 

the solution for maximum values of the three main displacements 

was formulated. 

3. Accordingly to the general theory, the problem of the lateral 

deflection of the cylindrical shells was solved. In particular, it was 

given the expressions for normal strains in the capacity’s cross-

section and for the tangential strains in longitudinal direction and 

longitudinal, radial and circular deformations. 

4. It was made graphical nomograph for the convenient calcula-

tion, which could be used as an alternative when searching for 

intermediate calculation functions. In addition, we need to consid-

er the conditions of edges’ fortification. 

5. General assessment of the total deflected mode of the capacity’s 

construction was made, depending on the number of decomposi-

tion coefficients, which were put in the calculations. 
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