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Abstract 
 

Dynamic system calculation scheme "Vibrating machine is compacting medium", where the latter is represented as a system with 

distributed parameters is compiled. As a result of the wave equation of oscillations solution, the law of compacting medium defor-

mation over the entire thickness of the concrete layer is determined depending on the increasing density of the molded mixture, its 

physico-mechanical characteristics, the thickness of the concrete layer, the mass of the oscillating part of the vibrating machine, the 

frequency and amplitude of the disturbing force, elastic suspension stiffness and coefficient inelastic resistance. Changes in the com-

pacting concrete medium resistance forces during the vibration compaction, depending on its consistency are determined. 
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1. Introduction 

The physical and mechanical characteristics of the compacting 

medium largely determine the nature of  vibrating machine dy-

namic  system and significantly influence the determination of its 

basic parameters. A sufficiently accurate identification of the 

physico-mechanical properties of the compacting medium makes 

it possible to establish a rational law of motion and a stable mode 

of vibrating machine operation, to choose correctly the technolog-

ical parameters of the vibrational effect on the medium to be treat-

ed, which usage ensures efficient compaction with low energy 

intensity.  

In previous studies, the physico-mechanical characteristics of the 

deformable medium interacting with the vibrational working body 

were represented as discrete rheological models: the elastic Hooke 

model, the viscous body described by the Newton model, the vis-

coelastic body in the form of the Kelvin-Voigt or Maxwell model, 

the Bingham model [1], [2], [3], [4], [5],[6]. 

Many researchers have tried to present the physical and mechani-

cal characteristics of a deformed medium by various mathematical 

curves in the form of exponentiation function or a combination of 

a exponentiation function with a straight line [7], [8], [9], [10], 

[11], 12]. 

Such a representation of the compacting medium does not enable 

us to accurately determine the rational parameters of the vibrating 

machine and the modes of vibration influence on the molded mix-

ture, since it is not take into account the influence of the changing 

physical and mechanical characteristics of the compaction mixture 

during compaction, the frequency and amplitude of the vibration 

effect, the thickness of the compacting layer. The most accurate 

description gives an idea of the compacting medium as a system 

with distributed parameters, taking into account its elastic and 

viscous properties. 

In work [15] the interaction of a vibrating working member with a 

compacting medium is analyzed with an average of the dynamic 

modulus of elastic deformation and the coefficient of dynamic 

viscosity of a concrete mixture. In the works [13, 14], the change 

in these physical and mechanical characteristics is shown as a 

function of the density of the mixture, continuously increasing 

during compaction. In these studies, it was accepted that the com-

pacting concrete medium has a uniform structure and its vibrations 

under the action of a vibrational disturbance can be described by 

the corresponding wave equation [13, 14]. At the same time, the 

frictional forces arising inside the concrete mixture between its 

individual constituents during the reorientation of mineral parti-

cles and their convergence, deformation, redistribution of the 

binder were not taken into account. Therefore, in order to justify 

the rational parameters of the vibrating machine and determine the 

necessary mode of vibration action, it is necessary to accurately 

determine the change in the physico-mechanical characteristics of 

the compacting medium, take into account the effect of the emerg-

ing forces of resistance of the concrete mixture under influence 

vibrations of the vibrating machine [16], [17]. 

The aim of this work is to study the process of vibrating machine 

with a compacting medium interaction and to determine the regu-

larities of its oscillations during different consistency concrete 

mixtures compacting  

2 Deformations in the Compacting Waves 

Medium Distribution Investigation 

To determine the resistance forces that arise in the compaction 

process, let us consider the design scheme of the dynamic system 

"Vibrating machine-compacting medium" (Fig. 1), including a 

vibrating table 1, installed by means of elastic shock absorbers 2 

on the base plate 3 and vibro-exciters 4 and 5 mounted in the low-
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er part of the vibrating table. On the surface of the vibrating table 

is fixed form 6 with a concrete mixture 7. Under the influence of 

the vertically directed harmonic force tQ sin generated by vibra-

tion exciters of vibrations 4 and 5, the concrete mixture is com-

pacting. Here is Q  – the amplitude of the disturbing force;   – 

angular frequency of forced oscillations; t  – time. 

 
Fig. 1: Dynamic system "Vibrating machine is compacting medium"A 

calculation scheme VES OF  

 

Let us study the uniaxial stress state of a compacting concrete mix. 

In this case, the relationship between stress and deformation in a 

compacting medium is represented in the first approximation by 

the following equation:  
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Where   – the stresses occurring in the compacting volume in the 

vertical direction; u  and z  – Euler and Lagrange coordinates; 

E – dynamic modulus of elastic deformation of the volume being 

compressed;   –  the coefficient of inelastic resistance of the 

compacting volume, taking into account the internal friction of 

mineral particles in the mixture to be sealed, the cost of energy to 

destroy internal bonds, the displacement of air, the reorientation of 

particles and other phenomena in the condensed medium accom-

panying the vibration seal. 

Based on the presented calculation scheme (Fig. 1), we rep-

resent the motion of the condensed mixture in the direction of the 

coordinate z  in time t   in the form of a known differential equa-

tion (Maslov and Salenko, 
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where   – is the density of the concrete mixture in the compac-

tion volume. 

Taking into account expression (1), the dependence (2) is 

transformed into the following wave equation: 
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 The solution of the wave equation of the oscillations (3) for the 

mathematical model is sought under the following boundary con-

ditions: 

– at interaction of a compacting layer concrete with a surface of 

the bottom of the form 5 at a coordinate 0z , 
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– for the free surface of the compacting layer of the concrete mix-

ture at the coordinate Hz  , 
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Here is m  –  the mass of the vibration table along with the shape; , 

c and b  – coefficients of stiffness and inelastic resistance of 

amortizators in the vertical direction; F  – the area of the bottom 

of the vibrating plate, which contacts the sealing layer; H  – 

height of the compacting layer. 

We represent the solution of (3) in the form of an imaginary part 

of the complex function (Maslov and Salenko, 2014a), ie, 
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where )(zU  – the complex amplitude of the oscillations deter-

mined by the boundary conditions (4) and (5). 

After substituting the function (6) into expression (3), we obtain 

an equation for determining the complex amplitude of the oscilla-

tions: 
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solution of equation (7) is presented  in the following form: 
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where M  and N –  the integration constants (complex ampli-

tudes) determined by the boundary conditions (4) and (5); k – the 

wave number, 
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  – the absorption coefficient characterizing the damping of the 

perturbation, 
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Substituting expression (8) into dependence (6), we find the solu-

tion of equation (3) in the following general form: 
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Substituting the resulting solution (11) into the boundary condi-

tion (5), we establish the relation between the integration constants 

M and N : 
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On the basis of the obtained dependence (12) the expression (11), 

will take the following form: 
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To determine the integration constant N , it is substituted the ana-

lytic dependence (13) in the boundary equation (4) and obtain: 
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where   – is the reduced mass of the concrete mixture, 
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  – the reduced inelastic resistance coefficient of the concrete 

mixture, 
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Substituting the expression (14) into the dependence (13), we find 

in complex form the solution of the wave equation of oscillations 

(3), which satisfies the boundary conditions (4) and (5): 
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Multiplying the numerator and the denominator of expression (17) 

by the conjugate complex functions in the round and square 

brackets of the denominator, and picking out the imaginary part of 

the complex function from the resulting expression, we obtain 

after the transformations the desired solution of equation (3) satis-

fying The boundary conditions (4) and (5), in the following form: 
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where 1  – the phase angle between the displacement and the 

amplitude of the disturbing force, 
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The obtained solution (18) of the wave equation (3), satisfying the 

boundary conditions (4) and (5), describes the law of oscillations 

of the dynamical system "Vibrating machine - compacting medi-

um". At 0z  the obtained dependence (18) describes the oscil-

lations of the lower layer of the compacted medium and the bot-

tom of the form of the vibrating mashine: 

)sin(),0(  tAtu ,                                                              (22) 

 

where A – the vibration amplitude of the vibrating machine, 

 

With Hz   the obtained dependence (18) describes the oscilla-

tions of the upper layer of the compacting medium, i.e. 
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Analysis of the laws of motion of the compacted medium (18), the 

vibrating machine (22), and the upper layer of the compacted mix-

ture (24) shows that the oscillation amplitude of the vibrating ma-

chine (23) as the law of motion of the compacting layer (18) itself 

essentially depends on inertial and dissipative forces resistance of 

the compacting medium determined by the reduced mass (15) and 

the reduced inelastic resistance coefficient   (16) of the concrete 

mixture, as well as the angular velocity of the forced oscillations. 

elationship between the physical and mechanical characteristics of 

the medium to be consolidated, the height of the compaction layer, 

and the parameters of the vibrating action. 

     The value of the elastic deformation dynamic modulus of the 

mixture volume to be сompacted, depending on the consistency of 

the concrete mix and its relative density 
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can be represented in the form of the following exponential func-

tion: 
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where 0E  –  the dynamic modulus of elastic deformation of a 

non-compacted mixture layer at a density 0 , the values for dif-

ferent consistencies of concrete mixtures are given in Table 1; k  

– density of the packed layer of the mixture; 1z  and 2z – the indi-

ces assumed to be equal 41 z  and 22 z  for heavy concrete 

mixtures with a cone draft of 3.5 ... 4 cm (the equivalent rigidity 

of the mixture eG 5-7 s) and rigidity of eG 30 ... 120 s [7]. 

 

The values of the inelastic resistance coefficient   for the volume 

of the medium under consideration can be determined with a suf-

ficient degree of accuracy from the following relationship: 
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where 1K  – the proportionality coefficient, 05,01 K ; 1f  – the 

coefficient of internal friction of a concrete mixture under vibra-

tion, 
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0f  – the coefficient of internal friction of the concrete mixture at 

the beginning of the vibration process of compaction; 3z and 4z  – 

indicators m, that take the following values: 3z = 0,3; 4z = 0,08. 

Obtained theoretical dependencies enable to take accurately into 

account the physical and mechanical characteristics of the com-

pacting medium and to determine the rational parameters of the 

vibrating machine and the modes of vibration action, under which 

the effective compaction of concrete mixtures is ensured. Expres-
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sions (15 – 16) and (26 – 28) enable to determine the physical-

mechanical characteristics of the concrete mixture at its dynamic 

loading. The present values of the mass   and the coefficient of 

inelastic resistance   of the concrete mixture, obtained on the 

basis of the wave theory of oscillations, can also be used in the 

study of complex dynamical systems with spatial oscillations and 

in the compaction of hollow-core reinforced concrete products and 

products with complex configurations. 

3 Results and Discussion 

The obtained theoretical dependencies were verified on a laborato-

ry vibration machine with the following main parameters: mass of 

the vibration table together with the form 65m  kg; amplitude of 

disturbing force Q =2700 N at angular frequency of forced oscil-

lations  =293 rad/s; the rigidity of elastic supports is c 240 

kN/м. 

Concrete mixtures with a water-cement ratio of 0.4 were compact-

ed on the vibrating machine. The concrete mixture was compacted 

in a mold having a size in the plan of 350 350 mm2. Molded con-

crete products with a thickness 200 mm. 

In Fig. 2 shows the changes in the dynamic modulus of elastic 

deformation E of concrete mixtures of different consistency under 

vibratory action as a function of the relative density of the con-

crete mixture. Analysis of the presented dependences shows that 

for all consistencies of the mixture, the values of the dynamic 

modulus of elastic deformation E  increase with increasing rela-

tive density  . 

 
Fig. 2: Different consistency concrete mixtures dynamic modulus f elastic 

deformation modification (at a rigidities of Ge 7-120 s) as a function of 

the mixture relative density  
 

 
Fig. 3: The change in the coefficient of internal friction of concrete mix-

tures of different consistency (at a rigidities of 7 - 120 s) during the vibra-

tion compaction, depending on the relative density of the mixture 
 

 
Fig. 4: The change in the reduced mass of the concrete mixture during the 
vibration compacting, depending on the mixture different rigidity relative 

density. 

 

 
Fig. 5: Ratio change in the concrete mixture reduced mass during the 

vibration compacting, depending on mixture different rigidity relative 

density. 

 

Internal friction coefficient (Fig. 3) of the concrete mixture at the 

beginning of the vibration process of compaction is 0f = 0.11-0.9, 

then increases during compaction and at the final stage of compac-
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tion is 1f =0.125-0.28. Large values of the coefficient of internal 

friction are characteristic for concrete mixtures with lower mobili-

ty, i.e. at their greater rigidity. Also in Fig. 4 - 5, the reduced mass 

of the concrete mix   and the coefficient of the reduced mass 

gK  ratio equal to the ratio of the reduced mass   to the physical 

mass of  the concrete mixture compacted volume are presented.  

 
Fig. 6: Variation of the oscillation amplitude of the vibrating table vibrat-
ing machine in the process of different rigidity concrete mixtures vibra-

tional compaction. 

 

Consequently, at the end of the compaction, the reduced mass of 

the concrete mix approximates in magnitude to the physical mass 

of the molded volume of the concrete mixture. In this case, the 

inertial forces and the forces of inelastic resistance of the concrete 

mixture take approximately the same values at the final stage of 

the compaction process, regardless of the rigidity of the concrete 

mixture being formed. Therefore, the vibration amplitude of the 

vibrating machine at the end of the compaction becomes the same 

for concrete mixtures with a rigidities  Ge 7 - 120 s. 

Thus, on the basis of the study of the propagation of deformation 

waves in a compacting medium, represented as a system with 

distributed parameters, dependences were obtained to determine 

the physical and mechanical characteristics of the medium to be 

compacting. These dependencies can be used with a sufficiently 

high degree of accuracy in complex discrete dynamical systems 

describing the vibrations of vibrating machines used for molding 

concrete products, both simple and complex shapes. When expres-

sion (12) is substituted into equation (1), one can find the stress-

strain state of the compacting medium in the process of compac-

tion and clarify the rational parameters of the vibrational action on 

the medium being compacting. 

4 Conclusion  

Based on the wave theory of oscillations, deformation waves in a 

compacting medium propagation process, represented as a system 

with distributed parameters, is studied and compacting medium 

regularity under vibration influence deformation is determined 

depending on the physical and mechanical characteristics of the 

compacting medium, the thickness of the packed bed, the mass 

vibrating machine, frequency and amplitude of the disturbing 

force, stiffness and inelastic resistance coefficient of the elastic 

suspension. The changes in the reduced mass and the reduced 

coefficient of inelastic resistance of the con create mixture enables 

a complex dynamic system with distributed parameters to be rep-

resented as a discrete dynamical system. The 

determination of the stresses arising in the medium to be compact-

ing will enable to substantiate the most rational modes of vibra-

tional action on the medium to be compacting, while ensuring the 

ultimate destruction of its structural bonds and effective compac-

tion. 
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