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Abstract 
 

The theoretical analysis of corrosion processes on the periodical profile reinforcement in low potential corrosion environment has 

been conducted using a mathematical model. The boundary between liquid and metal phases in the model was set by a sinusoidal 

laxly concaved profile. In this research, it’s been suggested the hypothesis that mass transfer of cathodic and anodic depolarizers on 

the surface of corroborated reinforcement is defined by diffusion such that current density is constant on long distance from the 

boundary between the phases. The Laplacian equation has been solved by perturbation method representing concentrations as math-

ematical row by a small parameter. It has been analyzed the possibility of occurring a liquid coating under the concrete protective 

layer on the reinforcement surface in the contact spots between the ribs and reinforcement body. It’s been discovered how the profile 

geometry impacts the distribution of corrosion current. 
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1. Introduction 

During the designing stage of reinforced concrete structures, some 

specific measures are applied in order to prevent a corrosion of 

reinforcement in them. There is a number of different methods of 

a reinforcement protection [1 – 4].  

Nevertheless, external observations indicate that a failure of rein-

forced concrete structures caused by a reinforcement corrosion in 

them. At the initial stage, a model of reinforcement corrosion in 

concrete might be represented by a simple scheme: environment – 

concrete – reinforcement. But that model doesn’t account for all 

the spectrum of existing interactions between its elements. 

Thus, a shape of a structure, a reinforcement location in it, rein-

forcement profile shape cause an electrochemical heterogeneity on 

reinforcement surface. 

In building reinforced concrete structures, the access front for 

depolarization (oxygen) to reinforcement might be one-sided 

(thick plates, beams, etc.), two-sided (thin plates), triple-sided 

(edges, thin-walled beams). 

Concrete plays a significant role in reinforcement corrosion since 

it is in direct contact with a reinforcement in reinforced concrete 

structures. Different conditions of concrete have a significant im-

pact on its corrosion features. 

Concrete as a porous medium possesses sorption characteristics 

which leads to the accumulation of water and aggressive reagents 

in concrete layers. On the contrary, concrete porosity creates a 

gradient in depolarization coming from an external environment to 

the reinforcement. 

A periodical profile can cause a concentration of changes in pro-

tection layer of concrete adjacent to reinforcement, thus, facilitate 

arising the intervals of different corrosion systems. Different con-

centration of depolarization (oxygen) at the top and bottom parts 

of reinforcement ribs with the periodical profile will cause a dif-

ferent density of corrosion current. 

According to the laws of electrochemistry, the intervals of metals 

supplied by the less quantity of oxygen gain more negative poten-

tial and, under favorable conditions for galvanic pairs activity, are 

anodic.  

2. Main Body 

When reinforcement is in contact with the aggressive mixture, that 

accumulated inside of the protective layer of concrete, or exposed 

as a result of its damage, a set of common patterns remains under 

these conditions. The patterns specific to corrosion of steel im-

mersed in a liquid electrolyte [5, 6]. 

The reinforcement roughness of periodical profile makes its sur-

face not equally available in respect to diffusing component of 

electrolyte, which leads to significant deviations in the distribution 

of corrosion currents on reinforcement surface in the longitudinal 

direction [7 – 10]. 

2.1. Distribution of Electrode Areas on the Reinforce-

ment with Periodical Profile in Conditions of Low Po-

tential Energy 

A theoretical analysis of corrosion processes in described condi-

tions is conducted on the mathematical model in which a boundary 

between metal and liquid phases presented as sinusoidal laxly con-

caved profile (fig. 1). 
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kxHy sin ,                                                                                (1) 

 

where H – amplitude, L – period, 

k = 2π / L, x, y – current coordinates, given that Hk < 

1.

 
Fig. 1: The periodical profile reinforcement surface modeling: a – the 

longitudinal cross-section fragment of reinforcement; b – the reinforce-

ment design fragment scheme; c – a model of the design fragment; 1 – the 
reinforcement rib; 2 – reinforcement rod; 3 – boundary phase; 4 – electro-

lyte 

The sinusoidal profile is built based on a rough boundary (fig. 2) 

taken from a real geometry of periodical profile of reinforcement 

under the condition that AB = BK = KC = CL. The distance be-

tween points A and D is period L, and amplitude are defined by a 

distance of points B and C from AD line. 

Fig. 2: The current distribution along the sinusoidal profile 

 

Let us suggest that mass transfer of anodic and cathodic depolariz-

ers at the surface of the reinforcement under corrosion is defined 

by a diffusion, the current density at long enough distances from 

phase boundaries is constant, and electrical current lines are paral-

lel with each other and orthogonal to the surface of a reinforce-

ment bar. Under these assumptions in stationary conditions the 

task comes down to a join solution of two-dimensional differential 

Laplace equations that describe diffusive field of anodic and ca-

thodic depolarizers: 

 

0C ,                                                                                         (2) 

 

under the following boundary conditions: 

a condition of phases boundary shape is (1); 

a condition of the current density continuity at long distances from 

boundary phases (regularity at ∞) is 

 

coriyCi  /1

1  when y ,                                         (3) 

coriyCi  /2

2  when y .                                       (4) 

 

the condition of processes conjunction on surface phases separa-

tion is given by 
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The condition of reinforcement surface equipotentiality (under a 

high conductivity of electrolytic environment and sinusoidal laxly 

concaved profile) potential of which equals the stationary potential 

is: 

 

);;;;;;( 0000
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In the equations (3 – 6): 

C1 and C2 – are the concentration of anodic and cathodic depolar-

izers; Z – a charge of diffusive ions; D – diffusion coefficient, F – 

Faraday’s constant, icor –corrosion current density, dC/dn – deriva-

tive over normal to the profile, ca0 and cc0 – equally weighted con-

centrations of anodic and cathodic depolarizers, ia
0 and ic

0 – inter-

change currents, Ea
0 and Ec

0 – equally weighted potentials of an-

odic and cathodic depolarizers, and σ1 and σ2 are given by 

 

FDz aa 1 ,                                                                            (7) 

 

FDz cc 1 ,                                                                           (8) 

 

Taking into account that kH < 1, equation (2) can be solved by 

disturbance method, representing the concentrations as sequences 

by minor parameter. 

The following dimensionless variables have been introduced in 

Laplacian equation (2) and boundary conditions (3 – 5): kxx  ; 

kyy  ; kHh  ; cpiCk /  . Then 
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The boundary conditions (3, 4): 

 

1
1






y


 when y                                                              (10) 

1
2






y


 when y                                                             (11) 

 

Condition (5) can be converted as follows: 
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To simplify equations (2 – 12) the following variables were intro-

duced: 

 

xw  ; xhyv sin .                                                               (13) 

 

By substituting (13) into (7) the following equation has been ob-

tained: 
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Substituting xw  , (14) goes down to: 
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Boundary conditions (10 – 12) are transformed into: 

 

1
1






v


 when y                                                              (16) 

 

1
2






v


 when y                                                             (17) 

 

.coscos

coscos

22
22

2

11
22

1

w
wh

w
wh

v

v
wh

v
wh

v



































 when v=0                     (18) 

 

Neglecting the values containing the second and higher degrees of 

h, the following expression can be compiled: 
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By fragmenting the latter equation over h the final form will be: 
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Similarly, boundary conditions (16 – 18) will become: 
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After simplifying equations (1 – 8) and boundary condition (27) 

the system of equations goes down to: 
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Equation (28) is inhomogeneous differential Laplacian equation 

(Poisson’s equation), but since wsin1   is its partial solution, 

than, by substituting wF sin1  , it’s possible to convert it into 

homogeneous Laplacian equation for the following function: 
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The solution of (32) can be found by Euler-Fourier method in the 

following form: 

)()(),( wWvVwvF  ,                                                               (33) 

 

where ),(vV  )(wW  – are the new unknown functions. 

The final solution for Laplacian equations is as follows: 
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Considering the function C and variables x, v and using formulas 

;xw  ;kxx   ;kyy   
cpiCk /  , the following solution to 

equations (2 – 6) has been obtained: 
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Where kxhkyV sin , kHh  , A and B – integration con-

stants. The distribution of the anodic corrosion current over the 

sinusoidal profile at initial stage is 

 

  kxBkxAhixi cora cossin1)(                                       (37) 

 

For the determination of A and B constants equation (37) is used. 

When cathodic and anodic reaction is defined by diffusion, the 

distribution of corrosion current can be defined by 

 

 kxHkixi cora sin1)(  .                                                          (38) 

 

Equation (38) coincides with Wagner’s equation for the processes 

of metal polishing and deposition under the condition of constant 

potential profile or constant concentration of dissolving and de-

positing metal. 

Using the analogic calculations, it is possible to obtain equations 

of corrosion current distribution for the other kinetic conditions of 

the inherent reactions course. 

Thus, the obtained results allow assessing the corrosion processes 

in a wide range of initial data. From equation (38) it’s getting clear 

that the maximum density of the current will take place when 

sinkx = 1, and minimum – when sinkx = -1. 

That results in smoothing process of a reinforcing bar. As a corro-

sion velocity increases (icor), the unevenness in current distribution 

increases. 

The geometry of reinforcement profile has a significant impact on 

corrosion current distribution. 

Using Faraday’s law, it’s possible to describe the change of profile 

amplitude in time: 
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where M and ρ – molecular mass and density of dissolving metal, 
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iv, ivp – the current density of dissolving metal at the top and bot-

tom of a rib, 

za – valence of anodic depolarizer ions, 

F – Faraday’s constant.  

Since iv-ivp=[(1+Hk)+(1-Hk)] ·ik=2ik·kH, then (39) can be modi-

fied to the following form: 

 

dH/H=-Adt,                                                                                (40) 

 

where A = (M/(ρ·za·F))·2icor·K. 

The common solution for equation (40) is lnH = -At+C. Substitut-

ing the initial conditions H|t=0=H0, the solution of (40) will be 

obtained in the following form: 

lnH = -At + lnH0, which goes down to 

 

H = H0·e
-At                                                                                  (41) 

 

Assuming that the thickness of the corroborated metal is 

δ=2M·t/( ρ·za·F), than (41) becomes 

 

H = H0·e
- δK.                                                                                (42) 

 

Thus, analyzing the (42) it’s obviously that the best corrosion 

characteristics (assuming that the thickness of corroborated metal 

is even) have the profiles with the least value of “K”. 

2.2. Surface Wetting of the Periodical Profile Rein-

forcement 

During the research of corrosion processes on the reinforcement 

surface, it is necessary to account for physical and chemical phe-

nomena that occurs when liquid is in contact with a solid surface. 

First of all, there is a process of liquid spreading until the edge 

angle is formed. Its boundaries are defined by the vector direction 

of surface tension between the “liquid-gas” and “metal-liquid” 

environments (σlg and σml). 

Surface wetting of periodical profile reinforcement has a set of 

features compared to flat surface reinforcement. The ribs on the 

reinforcement surface lead to a respective increasing in specific 

free energy surface (surface tension): 

 

σml
S = K σml,                                                                                 (43) 

 

where σml
S – is a surface tension of liquid on periodical profile 

reinforcement; 

σml – is a surface tension on flat surface reinforcement; 

K – is the increasing of liquid contact area on a surface of periodi-

cal profile compared to the flat surface reinforcement. 

According to Ventsel-Deriagyn equation: 
 

cosθP = K·θ,                                                                                (44) 

 

where θP, and θ are the edge angles of liquid wetting on a surface 

of periodical and flat profile reinforcement. 

Since K > 1, cosθP > cosθ, and θP < θ, that is periodical profile of 

reinforcement leads to decreasing of the edge angle, and im-

provement in reinforcement wetting. 

The edge angle formed on a surface of periodical profile rein-

forcement θP (fig. 4) is defined by the edge angle θ and angle φ 

that characterizes tilts of orthogonal ribs. 

 

θP = θ+φ.                                                                                    (45) 

 

Angle φ can be determined by the formula: 
 

tg φ = - dy/dx.                                                                             (46) 
 

Angle φ is variable and depends on the contact place between a 

liquid boundary and reinforcement surface. According to (46), it 

defines the value of the edge angle hysteresis. 

On the idealized surface of the periodical profile reinforcement 

(fig. 5) the rib height can be estimated by 

 

y = h·(1 + cos 2π·x/t),                                                                 (47) 

 

where y, h – are the instant and maximum heights of a rib respec-

tively; 

t – is the distance between the neighboring ribs. 

Fron equations (46) and (47) it’s possible to conclude that the 

expression for φ will be: 

 

φ = tg-1 [(2π·h/t)·sin(2π·x/t)].                                                      (48) 

 

The actual value of φ change varies between minimum and maxi-

mum, that is φmin ≤ φ ≤ φmax. The maximum φmax will be obtained 

when sin (2π·x/t) = 1, and minimum – when (2π·x/t) = -1. 

 
Fig. 5: The idealized surface of the periodical profile reinforcement 

Table 1 and fig (6). show the values of φmax and K of convenient 

periodical profile reinforcement from #5 to #50 for different h/t 

ratios. 

 
Fig. 6: The idealized surface of the periodical profile reinforcement 

with the sinusoidal profile 

Table 1. φmax and K values for periodical profile reinforcement 

# h/t K φmax # h/t K φmax 

6 0.1 1.38 32.13 22 0.187 1.5 48.19 

8 0.15 1.39 43.29 25 0.187 1.48 48.19 

10 0.143 1.53 41.92 28 0.222 1.59 54.31 

12 0.178 1.61 48.19 32 0.2 1.53 51.47 

14 0.178 1.56 48.19 36 0.208 1.57 52.56 

16 0.187 1.59 48.19 40 0.208 1.55 52.56 

18 0.187 1.55 48.19 45 0.2 1.55 51.47 

    50 0.2 1.53 51.47 

3. Conclusion  

The developed mathematical model allows estimating the corro-

sion processes on the periodical profile reinforcement in a wide 

range of initial data. 

The theoretical analysis of the model reveals that distribution of 

corrosion current is significantly influenced by the geometry of a 

reinforcing bar profile. 
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The smoothening effect will be increased by a higher number of 

the periodical profile ribs. 

When the corrosion velocity increases, the inhomogeneity of the 

corrosion current distribution over the periodical profile rein-

forcement surface increases too. 

Adequacy of the developed model is confirmed by the experi-

mental research of the rod reinforcement segments. 
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