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Abstract 
 

The usage aspects of ideal plasticity theory for concrete and reinforced concrete are investigated. The plastic deformation is considered to 

be localized n thin layers on the failure plane which divides the element into rigid parts. The variation method is used and the solutions in 

discontinuous functions are received. The functional of virtual velocities principle is investigated to stationary condition, the minimal 

capability of plastic deformation is found with which the solid changes into the mechanism. The limit and realization criterion of con-

crete failure under shear are set. The reinforcement influence on the element load-carrying capacity is taken into account. 

 
Keywords: Shear, Plasticity theory, Variation method.                                                                                                                                                                  . 

 

1. Introduction 

One of the most significant challenges of nowadays is the building 

efficiency raise. The development of sufficiently general theoreti-

cally grounded calculation methods is actual for new building 

structures creation and providing the reliable operation of existing 

buildings and structures. It is of essential sense for concrete and 

reinforced concrete elements as their work differs by complication 

and variety of behavior under loading and identifies by many fac-

tors. Using the empirical relations does not rarely lead to signifi-

cant inaccuracies that correlate with their limitations by experi-

ment conditions. Meanwhile, the significant success has been 

obtained by the deformable solid mechanics classical theories 

usage [1 – 4], which has found numerous experimental confirma-

tion [5 ‒ 7]. For carrying capacity estimation of concrete and rein-

forced concrete structures, the most advanced are the brittle failure 

mechanics by the breaking form of their integrity, and the plastici-

ty theory by the shear and fragmentation. 

Mathematical tool of ideal plasticity theory has been grounded, as 

well as repeatedly approved on plastic materials, in particular steel 

[2 – 4, 8]. 

Based on plasticity theory the strength of massive and flat con-

crete elements under fragmentation has been determined [9, 10]. 

The most known tasks are stamping the concrete into the concrete 

base and limit equilibrium of symmetric compressed wedges with 

a cut facet within flat stress state and flat deformation conditions 

[9]. The characteristic lines method has been used. The plastic 

deformation has been considered to be localized in fields with 

stress state of uniaxial and biaxial compression that fit to stamp 

and wedge top. 

The use of plasticity theory for concrete and reinforced concrete 

under shear has certain precautions that deal with their externally 

brittle character of failure. At the same time it should be pointed 

out that shear is realized only under condition of intense defor-

mation presence and is its result. The concentrated deformation in 

the shear area is also confirmed by the results of experimental 

research [11 – 13]. 

Plasticity theory provides for the plastic deformation localization 

directly near the failure surface [8, 14, 15]. Widely known discrete 

strength tasks solutions of plastic material elements are no less 

effective than those that take into account the intense deformation 

areas voluminosity. 

The pointed out information grounds the localization of plastic 

deformation in thin layers on the displacement surface of concrete 

and reinforced concrete elements in low-deformed adjacent re-

gions. 

The purpose of this work is to establish the peculiarities and to 

confirm the usage perspective of ideal plasticity theory for con-

crete and reinforced concrete. 

2. Basic Material 

If the application results of the plasticity theory mathematical tool 

to concrete for its fragmentation may be referred to classical con-

ception, then they need additional detailing and confirmation un-

der shear. 

Problems of concrete and reinforced concrete strength under shear 

hold a prominent place in general strength theory and have a sig-

nificant practical value. The depth of their knowledge in a greater 

degree determines its development level and optimality of ele-

ments number structural solutions and connection joints. 

Greater attention to the study of shear phenomenon in concrete 

devoted since the 90’s of the 19th century, but the problem could 

not be treated as completely solved so far. 

Whereas it is necessary to solve many practical strength tasks of 

concrete and reinforced concrete elements under the action of 

shear forces (beams and slabs in the zone of transverse forces 

action, short elements, key joints of slabs with girders and with 

each other, girders with columns and columns with foundations in 

the frame constructions, joints of wall panels in the frameless 
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constructions, contact joints of cast-in-place and precast construc-

tions etc.), the question of concrete strength to so-called “pure 

shear” , .c shf becomes of particular importance. Its solving and the 

use of superposition principle – stress overlapping of shear, com-

pression, and tension, would determine the strength of any con-

struction destroyed under shear. 

Definition of “pure shear” concept is of sufficient importance. In 

the mechanics of rigid deformed body it is understood under “pure 

shear” such kind of flat stress state, in which only tangential 

stresses act on two mutually perpendicular planes oriented in a 

certain way [1]. In this case, the deformations are characterized 

primary by a right angles change of rectangular element, and the 

main stresses 
1  and 

2  are equal to each other in absolute value, 

are opposite in sign and are directed at the angle of 45º to the fac-

ets of rectangle. Consequently, on the limit surface in 
1 ,

2  axles 

above-noted definition “pure shear” responses to the point in “ten-

sion-compression” area that lies on the bisecting line of the coor-

dinate angle. 

At the same time, the scientific works devoted to the research of 

concrete and reinforced concrete structures include certain charac-

teristics in the “pure shear” definition. These characteristics are 

related to the failure character of elements under shear action, in 

particular: in pure form shear corresponds to the element separa-

tion in two parts along the section, where the shearing forces act 

and by means of displacement along the plane on which only tan-

gential stresses act [2, 3]. 

Above-named “pure shear” definitions point out or unite two as-

pects of considered effect: the forced one – “pure shear” as a case 

of flat stress state that is characterized by acting of only tangential 

stress, and the cinematic one – “pure shear” as a failure mode that 

is characterized by the relative displacement of element parts 

which are separated by the shear plane. 

In an attempt to combine above-named aspects of considered ef-

fect for concrete, searching of “the most relevant” sample was 

made for evaluation of concrete shear strength characteristics 

,c shf  over the decades. Such searching direction looked like logi-

cal enough and corresponded with known experimental data for 

plastic materials which had the pointed compatibility as possible. 

Experimental study of “pure shear” is actually divided in two di-

rections, corresponding to one of the sides of the phenomenon 

under consideration. However, to date, no sample has been found 

that allows to combine the stress state of “pure shear” with the 

form of failure by shear. These difficulties, in our opinion, can not 

be overcome, since the desire to find the “most suitable” sample in 

the above-mentioned understanding does not take into account the 

real mechanical properties of concrete. For structurally inhomoge-

neous stone materials having different compression and tension 

resistance, the phenomena of “pure shear” as a case of a flat stress 

state and a form of failure are not compatible. That is, for concrete 

it is necessary to distinguish between two interpretations of the 

“pure shear” concept, having independent significance. These 

interpretations are very different: the first one is a “pure shear” as 

a particular case of a stress state, it is important in the develop-

ment of strength theories, the second one - as a failure form, it is 

often encountered in practical tasks. 

Researchers are offered by a variety of empirical dependencies for 

determining the concrete resistance to shear ,c shf as a function of 

concrete strength on compression , ,( )c cube c prizmf f , tension ctf  and 

both strength properties. The analysis of these dependencies 

shows a large discrepancy in the numerical values of the resistance 

to shear obtained by various authors, and almost all of them are 

confirmed by actual series of experiments. It testifies to their pri-

vate nature, which is determined by the shape of the sample, the 

loading scheme and the conditions for conducting the experiment. 

Due to the variety in the construction practice of shear cases as 

failure forms it is impossible to establish a single characteristic of 

the concrete strength under shear. Only its particular values are 

obtained for individual cases. This leads to the domination of em-

pirical dependencies in the strength calculations of concrete and 

reinforced concrete elements and the impossibility of optimizing 

the constructive decisions of elements on their basis. Therefore, 

the development relevance of a sufficiently general and precise 

strength calculation theory of concrete and reinforced concrete 

elements under shear on the basis of the mechanics of a deforma-

ble solid is evident. 

Characteristic features of such a scientific theory should be its 

commonality, the ability to explain the physical essence of a suffi-

ciently wide range of known phenomena, to predict new depend-

encies, properties and phenomena, to describe with the necessary 

accuracy the quantitative relations of the processes parameters 

under consideration. The theory should be simple enough, to use 

standard tasks solving programs for its realization, easy to learn by 

users, to base on the elements failure stage consideration, and the 

design schemes to visualize the kinematics of the failure mecha-

nisms. 

When applying the plasticity theory, it is important to consider the 

development peculiarities of the deformable solid ultimate state 

from structurally inhomogeneous materials, to which concrete 

belongs. 

This process leads to the formation of a ultimate macroscopical 

structure, the so-called kinematic mechanism. Its development is 

due to the achievement of the ultimate state of the body in the 

most intense and deformed region (the region of failure), where 

irreversible deformations are localized, due to which parts of the 

solid that are divided by the failure surface, acquire the possibility 

of mutual movement [16]. 

By character, two opposite types of kinematic mechanism are 

distinguished – brittle and plastic. In the first case, the level of 

stress and strain dominates in the tension zone, in which the mi-

crocrack of separation is formed, the sudden spread of which leads 

to brittle fracture. At the same time, the ultimate state in the com-

pressed zone does not occur. As an example of a brittle kinematic 

mechanism is the structure of a concrete beam in the failure stage. 

To determine the strength of elements with such a failure mecha-

nism, the most preferred is the brittle failure mechanics. In the 

plastic kinematic mechanism, the deformation process in the ulti-

mate state passes more gradually (continuously). A characteristic 

feature of the plastic kinematic mechanism is the simultaneity of 

the existence of an ultimate state in the entire failure region, which 

is not possible under a brittle kinematic mechanism. This behavior 

of the plastic kinematic mechanism is due to the sufficient re-

source of materials plastic deformations of a deformable solid, for 

which a diagram of an elastic-plastic or rigid-plastic body with a 

limited range of ductility can be used. 

The plastic properties of the concrete depend on many factors, of 

which the type and strength of concrete are the most important, as 

well as the character of the stress-strain state. For example, with 

average compressive stresses, plastic properties increase signifi-

cantly. 

Concrete deformation diagrams «σ - ε» with sufficient accuracy 

can be approximated by a polygon consisting of three sections: the 

initial ascending, horizontal section of the conditionally ideal plas-

ticity of a limited length at the limit stresses values and the de-

scending - under extraterrestrial states. Usually an obstacle to 

applying ideal plasticity to concrete is the limitation of conditional 

plasticity length site on the approximated diagram "σ - ε" for con-

crete. However, even for materials with increased plastic proper-

ties, a limited range of ideal ductility is actually used. Analysis of 

the concrete deformation diagrams indicates a significant increase 

in the intensity of plastic deformation at its top, especially in the 

area of the downward branch, which confirms the perspective of 

the plasticity theory [16]. At the same time, using the ideal plastic-

ity theory for concrete, the question arises about the plastic defor-

mations resource required in certain strength problems to ensure 

the simultaneity of an ultimate state existence across the entire 

failure area. 

Among the prerequisites for creating a calculation method the 

concept of rigid-plastic body is used. The model of the localiza-

tion of plastic deformation in a thin layer on the failure surface 

leads to really simple methods for assessing the strength of ele-
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ments in complex inhomogeneous stress-strain states and is there-

fore attractive for use in practice. Plastic failure is characterized 

by large inelastic deformations without disturbance of macrosco-

picity (without macrocracks). 

The presentation of concrete as a rigid-plastic body makes it pos-

sible to apply to it the ideal plasticity theory. The concept of rigid-

plastic body allows us to apply the principle of virtual velocities, 

discontinuous solutions, an upper bound of the boundary load and 

creates conditions for a certain simplification of the strength prob-

lems. In a homogeneous ultimate stress-strain state, shear is real-

ized in the local most stressed zone, in the inhomogeneous one - in 

the compressed failure area, which divides the body into rigid 

parts that make a mutual movement due to localized inelastic de-

formations. A qualitative criterion for the applicability of the plas-

ticity theory can be formulated as the existence possibility (at least 

for a moment) of the plasticity conditions (strength) across the 

entire region of the concrete ultimate state, completely intersecting 

the body, the development of which is necessary for its transfor-

mation into a kinematic mechanism [17]. At the same time, the 

externally brittle failure character is not an obstacle to the shear 

realization and the inapplicability of the plasticity theory. 

The task solution of the plasticity theory on the basis of differen-

tial equations is a rather complicated process. When calculating 

the ultimate load in the case of plane problems, the method of 

characteristics is sufficiently precise [9, 18]. However, the most 

versatile and simple is the variational method [16], the method of 

the ultimate equilibrium theory. In variational calculations, the 

solution is based on energy perceptions of a deformed solid, first 

of all, on the energy of deformation and its extreme properties. 

As a plastic potential the concrete strength condition of Balandin – 

Geniev is offered [9]. This condition is rather exact and simple in 

writing in tensor form and is represented as rotational paraboloid 

 

  2 2 0,i j shF T m T                                                              (1) 

where c ctm f f  , 2

3

c ct
sh

f f
T  , here cf  

and ctf
 
– concrete 

strength to compression and tension; Т – intensity of tangential 

stress; σ – average stress. 

When compression strength equals to tension strength, it becomes 

classic condition of Mizes, according to that intensity of tangential 

stress remains constant. 

Condition (1) in ,n n   coordinates has the following equation 

 

  2 20,25( )n n nf K m      ,                                           (2) 

where 2 2

max

1

3
c c ct ctK f f f f    .  

Dependence between deformations velocity ij  and stress ij  

determines by associate yielding law. 

The functional of virtual velocities principle is used for strength 

tasks solving [13]. This functional in general form is written as 

following in the absence of inertial and mass forces 

 

* *
cl i i i i

Sl

J W dS f V dS f V dS     ,                                        (3) 

where сlW  –  specific capacity of plastic deforming of concrete; 

*
if , *

iV  – forces and velocities that are relatively presented on 

fS  and VS  areas of element surface f VS S S  . 

Limit load value is determined as one that responses to minimum 

capacity of plastic deformation. And this deformation is localized 

in the thin layer with thickness 0n   on the failure surface. 

First part of functional (3) for flat stress state is written with the 

velocity jumps on the failure surface as following 

 

2 2

1 4 ,

l

n t n

S

J m B V V V dS      
                                             (4) 

where 2(1 / ) / 3c ctВ f f m  ;  
tV  and 

nV  – velocities jumps 

in tangential and normal to failure surface lS  directions (concrete 

volume increasing in ultimate state is taken into account – dilatan-

cy). 

Stresses on the failure surface in general form are determined as 

following 

 

2 2
2 ,

0,25

n
n

n t

V
m K

V V



 

  
                                                  

(5)  
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n t

V
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V V



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(6)

         
 

Selection of kinematically possible scheme is made for every fail-

ure case, and its specificity is reflected in the functional. The ge-

ometry of failure surface is varied, on which velocity breakups 

(jumps) tV  and nV , and also angle   between the surface and 

velocity direction of one element part to another is varied. As the 

result, the functional J  is investigated to stationary condition 

with the help of variation equation 0J  . This equation is 

equivalent to boundary problem solving and ultimate load mini-

mum value determining. 

Strength task of concrete plate in biaxial stress state conditions has 

been solved for checking of above-proposed mathematical tool. 

This plate is one of the basic samples for experimental confirma-

tion of strength condition with known stress state and direction of 

principal planes. 

Angle   determines the stress in element failure area by means of 

shear according to the accepted condition (1): 

 

normal 
 

2
4

1 4
n

tg
m K

tg





 


;                                                            (7) 

 

tangential 

 

21 4
n

K

tg






;                                                                         (8) 

 

principal normal               

 

 2

1 1n n tg tg        ;                                                    (9)  

 

 2

2 1n n tg tg        .                                                  (10) 

 

Kinematical failure scheme of plate is given in fig. 1. 

Velocities jumps on failure surface are 

 

cos sin
,

sin cos

n x y

t x y

V V V

V V V

 

 

   


   

                                                          
(11) 

 

its surface area and surface areas of plate, where the stresses 1

and 2  act, are equal consequently 

 

/ sin ,lS b  1 ,S b

 

2 / ,S b tg 

                                     

(12)

 where  –
 
thickness of plate 
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The functional (3) is being written with account of (4), (11), (12), 

taking into consideration that velocity in stresses direction 
1  

and 

2
 
action are 1 yV V  та 

2 xV V   consequently 

2 2

1 2

4( cos sin ) ( sin cos )

( cos sin ) / sin / .

x y x y

x y y x

J m B V V V V

V V b V b V b tg

   

        

   


                

(13)  

 
Fig. 1: Kinematically possible failure scheme of concrete plate with biaxi-

al stress state: 

t1 and t2 – possible directions of slide planes. 
 

The functional becomes the following one after some simple 

transformations taking into account that /x yк V V  

 

2 2

1 2

4( ) (1 ) ( )
.

m B к tg кtg к tg к
J

tg tg

  
 

 

     
     (14) 

The formula for determining the stress 1  has been received from 

the equality of functional J  to zero 

 

2 2

1 2

4( ) (1 ) ( )
.

m B к tg кtg к tg к

tg tg

  
 

 

     
  

      

(15)

   

Let’s give consideration to characteristic points on the concrete 

strength condition.  

Taking into account that angles  and   are correlated one with 

another and with ratio k  by the relation 

 

,arctg к                                                                            (16) 

 

and writing mВ К the following has been received 

 

2

1 2

1 4( ) ( )
1 .

tgtg tg
К m

tg tg tg

   
 

  

   
        

        

(17)   

 

When the formulation of concrete plastic deformation capacity by 

axial compression 2( 0)   is accepted as the constituent, which 

is used by given below tasks solving 

 

2

1

1 4( )
1c

tgtg
W K m

tg tg

 

 

  
       

                               

(18) 

the formula for value 1  determining in biaxial stress state condi-

tions takes the form 

 

1 1 2 ( ) / .cW tg tg      

                                                    

(19)

                      

 

 

In the maximum tangential stress point (at 
o0  ) there is 

 

1 ,m K  
                                                                               

(20)                    

2 .m K  
                                                                               

(21) 

 

Data about angles  and   values, normal 1 2, , n   and tangen-

tial 
n  stresses on the displacement surfaces determined by (7–10) 

with different ratio of concrete strength to tension and compres-

sion   are given in table 1. 

 
Table 1: The calculation results in characteristic points of concrete 

strength condition 

Parameter At   

0.15 0.1 0.05 

In the point of maximum compression stresses 

ψ -90о 

γ 90о 

σ1/fc 1.93 2 2.08 

σ2//fc 1.39 1.45 1.51 

σn/fc 1.93 2 2,08 

τn/fc 0 

In the point of maximum tangential stresses 

ψ 0о 

γ 45о 

σ1/fc 1.39 1.45 1.51 

σ2//fc 0.311 0.349 0.387 

σn/fc 0.85 0.9 0.95 

τn/fc 0.539 0.551 0.564 

In the point of uniaxial compression: σ1=1, σ2=0 

ψ 38о15' 37о16' 36о16' 

γ 13о30' 15 о28' 17 о28' 

σn/fc 0.383 0.367 0.35 

τn/fc 0.486 0.482 0.477 

In the point of maximum tension stresses 

ψ 90о 

γ 0о 

σ1/fc 0.311  0.349 0.387 

σ2//fc -0.229 -0.201 -0.177 

σn/fc -0.229 -0.201 -0.177 

τn/fc 0 

Stress values consist with specified concrete strength condition (1), 

which is taken as a basis of mathematic tool which is used. 

One of the important tasks in developing of quite general design 

theory of concrete and reinforced concrete elements under shear 

are the area establishing of its realization. 

Shear for plastic materials takes place in the presence of real dis-

placement planes that are present on the stress states interval in 

coordinates of principle normal stresses 1 , 2 , between the 

points of compression maximum stresses (in the biaxial compres-

sion area) and tension (in the biaxial tension area). For concrete 

the last one is shifted in the area of mixed stress states. Thereby 

the experimental research indicates the narrowing of pointed in-

terval. 

The boundary of shear realization in concrete is proposed to be 

established at points on the strength condition, the values of the 

angle   of which correspond to its magnitudes with uniaxial 

compression and tension of plastic materials, with the values 

equality of compression and tension strength. 

The values of normal and tangential stresses that correspond to the 

boundaries of the shear implementation are given in table 2. For 

perception visibility of the obtained results the sections of con-

crete strength (plasticity) condition in the area of mixed stress 

states are given in fig. 2, where the shear failure form takes place. 

And this failure form is bordered with separation failure. 

The analysis of the obtained results shows that in comparison with 

more plastic materials the boundary between shear and tear-off 

forms of failure is shifted in the direction of uniaxial compression 

(fig. 2). 

For low strength concrete with high plastic properties the area of 

shear intervals is expanded ( 1 / cf from 1 to 0.85, 2 / cf  from 0 
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to – 0.084 at 0.15  ) comparing to high strength concrete 

(
1 / cf from 1 to 0.95, 

2 / cf  from 0 to – 0.026 at 0.05  ).  

 
Table 2: Limit of the shear implementation in concrete in the zone of 
mixed stress states 

 
Fig. 2: Limit of the shear failure form implementation in concrete by the 

different ratios of tension and compression χ.
 

 

The lower boundary in the mixed stress states area corresponds to 

an angle 
о19 28 .   The maximum tangential stresses occur in 

the region of non-uniform compression at an angle 0   and 

equal to the value of concrete characteristics .К  The shear form is 

realized in concrete at the level of tangential stresses in the slide 

plane (failure surface) max2 / 3 / ,n   that is determined by the 

formula (8) and in the area of mixed stress states under condition 

arcsin 1/ 3  . 

These limits take into account the concrete properties. 

For most concrete elements the direction of external forces action 

does not coincide with the principal stresses. 

Let's concrete plate loaded with normal  and tangential  stress-

es.  

Kinematically possible failure scheme of such a plate is shown in 

fig. 3. 

The value of relative stresses on the loaded facet of plane is equal 

to  

1 ,
1 ( )

cW

tg tg


  


                                         
    (22)                 

 

1 ,
1 ( )

cW tg

tg tg




  


                                            
(23)  

where / .tg    
Such case of failure is realized in short consoles and beam-walls 

and in areas of bending elements at the supports. The boundary 

value of the relative load under sloping strip shear at different 

angles of its inclination (fig. 4) is determined by the dependence 

 

 
1 ,

sin ( )cos

u cV W

b tg    


                                  
(24) 

where b  and  – width and thickness of the strip.  
  

    
Fig. 3: Kinematically possible failure scheme of a concrete plane loaded at 

the ends with a normal and tangential force.  

 

The calculation results are given in table 3. 

 
Table 3: Calculation results of concrete plate strength with the joint action 

of surface stresses  and    

 
Fig. 4: Kinematically possible scheme of failure of an inclined compressed 

strip. 

It should be noted that the area of shear implementation in the 

inclined strip extends to the action of compression stresses 

0n   due to the limitation of transverse deformations in its 

work in the structure. This is evidenced by the consideration of 

shear failure form in the norms of Eurocode [19] when calculating 

the strength of the compressed element on the action of transverse 

force provided 2.5,сtg   where 
o21,8 ,   

o o o90 21,8 68,2   
 
(see table 1). 

The wedges simulate the strength of the compressed zone of con-

crete over the dangerous inclined crack of reinforced concrete 

bending elements. These wedges are loaded with normal and tan-

gential forces behind the cut facet. 

The failure of such wedges is possible in two schemes: at the right 

angle between the horizontal and the cut facets and near the blunt 

angle (fig. 5). 

The first case of failure, as the experimental research shown [20], 

is realized under the action of tangential forces in the direction to 

the right angle, or from it at small values T . 

The second case of wedge failure occurs when it is directed to-

wards a blunt angle with increasing values /tg T N   and de-

pends on the wedge angle   unlike the first case. 

Parameter 
At   

0.15 0.1 0.05 

ψ 19 о28' 

γ 35о16' 

σ1/fc 0.85 0.9 0.95 

σ2//fc -0.084 -0.054 -0.026 

σn/fc 0.227 0.264 0.299 

τn/fc 0.44 0.45 0.46 

 
Angle 

β,о 

Parameters-characteristics at 0.1   

ψ,о γ,о σn/fc τn/fc σ/fc τ/fc 

10 19.59 40.2 0.261 0.449 0.792 0.14 

20 23.38 43.31 0.179 0.417 0.621 0.226 

30 26.96 46.52 0.115 0.386 0.481 0.278 

40 30.39 49.8 0.062 0.357 0.364 0.305 

45 32.08 51.46 0.039 0.343 0.312 0.312 

50 33.75 53.1 0.018 0.33 0,265 0,316 

60 35.3 54.7 0.001 0.318 0.183 0.318 

70 35.31 54.7 0 0.318 0.116 0.318 
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The ultimate load in the first case of wedge failure is determined 

from the equation 

 

1,
1 ( )

u
c

V tg
W

bh tg tg



  


 
                                                       (25) 

where b  and h – width and height of the wedge cut facet.  

In the formula, the sign “+” corresponds to the direction of trans-

verse force V to the right angle, and the sign “-“ corresponds to 

the V direction from the right angle. In the second case of failure 

the ultimate load equals 

 

 
1

1 / ( )
.

1 ( )

u
c

tg tg tg tgV
W

bh tg tg

   

  

 


                            
(26) 

 

(а) 

 
 

 (b) 

 
  Fig. 5: Kinematically possible scheme of wedge failure as the models of 
the compressed zone of concrete over the dangerous inclined crack: 1st (a) 

and 2nd (b) failure cases.  

 

The calculation results of concrete wedges are given in table 4.  

At local compression of a concrete plate under the loaded area a 

seal wedge is formed, over the facets of which the plastic defor-

mation is concentrated [21]. In ratio of the plate height to the 

length of the loading area under the wedge there is a tensioned 

zone with stresses along the tearing plane .сtf Depending on the 

load transfer scheme, there are two cases of failure.  

The kinematic failure scheme with one-sided and double-sided 

local compression is shown in fig. 6.  
 

 

 

Table 4: The calculation results of the concrete wedges strength 
 

Angle of 
inclination 

β,о 

Characteristics at 0.1   

 

ψ,о 
 

 γ,о u

c

N

f bh
 u

c

T

f bh
 

First case of failure 

-5 38.71 17.58 0.891 0.078 

5 35.89 13.22 1.12 0.098 

10 34.6 10.79 1.25 0.221 

15 33.43 8.14 1.4 0.375 

20 32.42 5.16 1.56 0.567 

Second case of failure 

α=15О 

0 8.14 48.43 1.4 0 

10 13.22 50.89 1.07 0.189 

20 17.58 53.71 0.812 0.296 

α=30О 

10 5.16 62.42 1.41 0.249 

20 10.79 64.6 1.04 0.377 

30 15.47 67.27 0.75 0.433 

α=45О 

20 1.67 76.67 1.27 0,462 

30 8.14 78.43 0.887 0,512 

        (a) 

 
   

        (b) 

    
Fig. 6: The kinematic failure scheme of concrete plate with one-sided and 

double-sided local compression: one-sided (а); double-sided (b). 

 

The value of the boundary load on the plate in one-sided and dou-

ble-sided local compression is accordingly determined by the de-

pendencies: 

1

1
( ) 2 ,c

c

F h
W tg

f b l tg
  

 

 
    

 
                         (27) 

and 

 1

1
( ) .c

c

F h
W tg

f b l tg
  

 

 
    

 
                          (28)    

 

Shear in concrete is realized both at homogeneous stress state of 

the failure zone, and in the presence of compression areas and 

tension. [12, 20 ‒ 26]. In a heterogeneous stress state, the criterion 

of the shear implementation is the simultaneous existence of an 

ultimate stress state on the entire failure surface. It is possible only 

if the stress level in the compression zone exceed the stress level 

in the tension zone at the stages preceding the failure. That is, 

failure from shear occurs throughout the entire section simultane-

ously in the compression and tensile zone. 

It should be noted that the shear failure form of bending concrete 

elements looks like a sudden breaking away avalanche-like char-

acter, and with the relative shear span 0,15 / 0,4с h   it is visu-

ally difficult to distinguish the shear form from the breaking. Only 

in the case of pointed ratio increase a clearly expressed breaking 

form takes place with a characteristic for it low deformed failure 

zone, the determining resistance fct and a sharp decrease of the 

ultimate load value. In the case of insignificant influence of bend-
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ing moment M conditions are created for the plastic deformations 

localization on the failure surface in the compressed zone, that is 

an essential requirement for the shear form implementation. This 

form combines the external fragility and the presence of intense 

directional deformation in thin concrete layers. The pointed fact is 

characteristic for pseudoplastic materials with a large difference in 

the strength values fc  and fct, which include concrete. 

When designing concrete elements it is necessary to avoid their 

failure by breaking, that necessitates the introduction of a с/h val-

ue limitation. This limitation would correspond to the boundary of 

the shear failure form, which, despite the external avalanche-like 

character, makes it possible to use the plastic properties of con-

crete even in a thin layer on the shear surface. The strength at 

shear is higher than at breaking and depends both on the resistance 

fc and on the characteristics fct. Strength lowering with increasing 

of с/h occurs more slowly than at the breaking. 

To establish the boundary between the above noted forms of fail-

ure, let’s consider the distribution of stresses in the normal section 

at the breaking (fig. 7, a). The effort taken by the concrete element 

is determined from the zero equation of the moments sum 

 

,u u ct plM V c f W                                                                      (29) 

where 2 / 3,5plW bh  – plastic moment of rectangular cross sec-

tion resistance. 

Let’s write down the given dependence in the form 

 

0,29 ,sh ctf c f h                                                                        (30) 

where /sh uf V bh , coefficient  =1 with a dominant influence of 

М and  >1 – for short elements.  

Stresses in the area near the supports of bending elements signifi-

cantly exceed the strength .сtf  during the failure. This is due to 

the influence of the principal compression stresses. 

Taking into account that the failure surface under shear (fig. 7, b) 

is close to the normal section, it is possible to equate the stresses 

shf  and ,ctf  to establish the boundary between the shear and the 

breaking, and / 0,29.c h  is obtained from the formula (28). 

According to the results of experimental researches for the ratio of 

concrete resistance 0.1   the boundary between the shear and 

the breaking away of concrete keys has been fixed at / 0.3.c h   

According to the strength task solving of beam concrete element 

based on ideal plasticity theory the shear stresses at / 0,3c h  are 

1,4sh ctf f . The shear stresses were obtained by formulas (32), 

(33) at σ=0. 

                                    (а)                                   (b)                   

 
Fig. 7: For strength calculating of bending concrete element in the normal 
section: the distribution of forces in the section at the breaking away (a) 

and at the shear (b). 

 

For reinforced concrete elements the implementation area of the 

failure shear form is expanding. The influence of reinforcement is 

taken into account by applying on the calculation schemes of ex-

ternal compressive forces in the locations of the reinforcement. 

The moment, which is perceived by the reinforced concrete ele-

ment in the normal section (fig. 8, a), is determined by the formula 

 
2,u u m cM V c f bd                                                                   (31) 

where 1
y y

m

c с

f f

f f
  

 
  

 
– relative moment that is perceived 

by an element, b and d – width and working height of the section, 
ρ – reinforcement factor, yf  and fc  – the yielding point of rein-

forcement and the resistance of concrete compression,  – a coef-

ficient that takes into account the application place of  the result-

ing force in the concrete compressed zone.  

The ultimate value of transverse force for the shear form of failure 

is equal to ,u sh csV f bd  and is determined by the resistance to 

shear , ,sh csf  of reinforced concrete element. This resistance is 

established when solving this strength problem by the variation 

method in the plasticity theory. 

The resistance ,sh csf  of the bending reinforced concrete element in 

the approximate normal section (fig. 8, b) is equal to 

 

, 1

( )
( ) ,sh cs c

tg tg tg
f tg W tg

tg tg tg tg

   
    

   

  
    

  
 (32) 

where yf  – pressing stress. 

Three equations of equilibrium are used as additional conditions:  

 

0,AМ  0.ВМ  and
   

0.CМ 
                                                

(33) 

 

The calculation results indicate that   is equal to zero. 

Then the dependence (30) takes on a form 

 

 

 
2

2

,

1
1 ( )

3
sh cs c ct

tg
f tg f tg f

tg tg

  
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 

 
   


.       (34) 

 

The equation (31) can be represented as 

 

,/ / .m c sh csc d f f                                                                      (35) 

The shear resistance value ,sh csf  also depends on the ratio / .c d  

Setting the parameter /c d  with conditions (33) the value of 

, ,sh csf  is being found from (34) by the iteration method. And at 

this value the equation (35) is executed. When reinforcing the 

element with a longitudinal reinforcement of class A400C with 

reinforcement percentage of 1,5% and the concrete class on the 

compression C30/35, the shear implementation boundary corre-

sponds to the ratio of / 1.c d     

                                    (a)                                  (b) 

 
Fig. 8: For setting the failure boundary of a reinforced concrete element by 

concrete fragmentation in the compressed zone at reinforcement yielding 
(a) and at shear (b). 
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3. Conclusion  

The theory of ideal plasticity is perspective for the solution of the 

strength tasks of concrete and reinforced concrete elements under 

shear. 

Features of its application for concrete and reinforced concrete 

consist of: possibility of solving strength tasks with external ava-

lanche-like failure character by shear; localization of intense de-

formation in thin layers on the displacement surface in the com-

pression zone; taking into account the abruptions (jumps) of ve-

locity in the direction normal to the failure surface; advanced 

stress level in the compression zone above the stress level in the 

tension zone at the stages preceding the failure in conditions of 

heterogeneous stress-strain state; simultaneity of reaching the 

ultimate state on the entire failure surface; clarification of the 

shear area realization in concrete and reinforced concrete com-

pared with plastic materials. Failure through the shear occurs in 

the entire section. 

The application of the variation method in the plasticity theory 

allows to obtain theoretically reasoned, sufficiently simple and 

precise solutions of practical significance. 
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