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INTRODUCTION 

 

The wide use of frequency-selective electric circuits in communication 

technology requires sufficient attention to the study of patterns that arise during 

the operation of these devices. 

The authors of the manual tried, using the well-known mathematical 

apparatus (the theory of complex variables, methods of solving differential 

equations, trigonometric, hyperbolic and special functions) and the basic 

principles and laws of the theory of electric circuits (TEC), from the most general 

positions, to analyze the reactions of linear frequency- selective circuits with 

harmonic input actions 

The basic schemes of all types of LC and RC filters and their attenuation 

characteristics are given. The mathematical apparatus for the synthesis of filters 

of Batervort and Chebyshev is shown. 

Discrete electric circuits in general and digital filters in particular are 

considered in detail. A lot of attention is devoted to digital filtering algorithms in 

time and frequency domains. The methods of accelerating the digital convolution 

and fast Fourier transformation are analyzed. 

To simplify the understanding of physical phenomena, many illustrations 

and examples of the use of these circuits in the apparatus are given. 
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CHAPTER 1. OSCILLATING CIRCUITS 

 

In communication equipment, electric circuits (EC) containing two reactive 

elements, an inductance and a capacitance element, are widely used.  

These qualitatively new electrical circuits are called oscillating circuits 

(OC). There are two types of OC: series and parallel, which are shown in fig. 1.1. 
Series 

 
Parallel 

 
Fig. 1.1. Series and parallel oscillating circuits 

 

The oscillating circuit is characterized by primary and secondary parameters. 

Primary: L  – inductance; C  – capacity; R  is active resistance, or G  – is 

active conductivity. Conventional resistance does not exist as a separate element 

of OC. It takes into account energy losses in the coil wire, connecting wires, 

shields, dielectric losses in wire insulation, in the dielectric of the capacitor, in the 

coil frame, etc., and for the convenience of analysis and calculations is depicted 

on the diagram as a separate element. 

Secondary parameters include: 0f  – resonance frequency; resR  – resonance 

resistance; Q  – quality factor;   – wave resistance; 2 pf  – passband; 2 mf  – 

interference band; sK  – the coefficient of squareness. 

Let’s determine the properties of parallel and series circuits and find 

expressions for the secondary parameters through the primary ones. 
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1.1. Properties of parallel and series oscillatory circuits 

 

Let us consider at a qualitative level what processes occur in a parallel 

oscillating circuit under non-zero initial conditions. If the switch is set to position 

1 (Fig. 1.2), the capacitor will be charged to a voltage of E . 

 

 
Fig. 1.2. Processes in a parallel oscillating circuit 

 

Let’s move the switch to position 2. At the same time, the charged capacitor 

is discharged through the inductor. The energy of the electric field of the capacitor 
2

2
c

CE
W   

is transformed into the energy of the magnetic field of the coil 
2

2
L

LI
W  . 

Then the energy from the magnetic field of the coil passes into the electric 

field of the capacitor, etc. In this way, reactive energy is exchanged between the 

capacitor and the coil in the circuit. In a real oscillating circuit, in the process of 

this exchange, part of the energy of the circuit is irreversibly lost (due to losses on 

the element R ), turning into heat. As a result, the amount of energy in the circuit 

continuously decreases and free oscillations die out. 

In modern radio technology, undamped oscillations are used. To obtain such 

oscillations, it is necessary to continuously replenish the energy supply of the 

circuit to compensate for the losses. Such oscillations occurring in the circuit are 

called forced. 

In Fig. 1.3 an electric circuit is shown consisting of a harmonic current 

generator and an inductor and a capacitor are connected in parallel. 

 

 
Fig. 1.3. An inductor and a capacitor are connected in parallel 

 

Under the action of the generator, an alternating current flows through the 

elements of the oscillating circuit. Let’s consider the dependence of reactive 

conductivity of inductance and capacitance on frequency.  
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When  

2 0;f    
1

0;
CX

  
1

.
LX

   

As frequency increases, the capacitance of the capacitor increases (Fig. 

1.4). 

 
Fig. 1.4. Dependence of reactive conductivity of inductance and capacitance on 

frequency 

 

Inductive conductivity decreases with increasing frequency of the generator. 

At some frequency – 0 , the capacitive conductivity of the capacitor and the 

inductive conductivity of the coil become numerically equal. 

That is, 
1

o

o

C
L




 . 

Hence  
1

o
LC

   

is the resonant frequency. The phenomenon that occurs in an electric circuit 

consisting of a generator and an inductor and a capacitor are connected in parallel, 

with the equality of capacitive and inductive conductivity, is called parallel 

resonance. It should be noted that the capacitive and inductive conductivity are 

equal in the case when the frequency of the generator is equal to the frequency of 

free oscillations  0  of the circuit. At the same time, the currents of the inductive 

and capacitive branches are also equal – L CI I . The current in the branch with 

the capacitor is ahead of the voltage by – 
2


, and the current flowing through the 

inductor is behind the voltage by – 
2


. Therefore, in a common unbranched circuit, 

these currents appear in antiphase. In an ideal circuit, the current in the general 

unbranched circuit is equal to 0. The absence of current in the general part of the 

circuit allows us to assume that the resistance of an ideal parallel circuit at 

resonance is infinitely large. 
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In a real circuit, part of the electrical energy is spent in active resistance and 

an active current – 
0I  flows in the general circuit, which coincides in phase with 

the circuit voltage (Fig. 1.5). 

 
 

Fig. 1.5. Vector diagram of currents in a parallel oscillating circuit 

 

The presence in the general circuit of the current – 0I , which coincides in 

phase with the circuit voltage, indicates that the resistance of a real parallel circuit 

at resonance is not infinitely large, but has a certain value and is active in nature. 

It should be noted that the current – 0I  in the general part of the circuit is much 

smaller in amplitude than the current in the reactive branches of the circuit. 

The gradual rocking of an oscillating system to large amplitudes, with the 

condition that the rocking force acts in time with the period of its own oscillations, 

which is familiar from the experience of swinging a swing. Initially, under the 

action of a weak link, the system deviates from equilibrium very little, but when 

the efforts are repeated (in time with the period of its own oscillations), the system 

constantly oscillates. It is on such an accumulation of the action of weak forces 

that the swaying of the circuit is based. The energy coming from the source for 

each period is partially dissipated in the resistance of losses, and partially goes to 

increase the energy reserve of the oscillating system. 

In the stable mode, the oscillations stop increasing and the total power of the 

source at each moment is equal to the power dissipated in the loss resistance. The 

same can be considered in relation to a series OC, which is acted upon by a source 

of harmonic electromotive force (HEF) (Fig. 1.6). 

 

 
 

Fig. 1.6. A series oscillating circuit under the action of a HEF source 



9 

The phenomenon of resonance here consists in a sharp increase in the 

amplitude of the alternating current when the oscillation frequency of the 

generator coincides with the natural frequency of the oscillating circuit. At the 

resonance frequency, voltages – 
LU  and 

CU  mutually compensate each other due 

to the fact that at any frequency they are in antiphase, and at the resonance 

frequency, the amplitudes of these voltages are equal. For an ideal oscillating 

circuit ( 0R  , no losses) at resonance, the conductivity and, accordingly, the 

current amplitude are equal to infinity. For an oscillating circuit with losses  

( 0R  ), the current amplitude is limited. The vector diagram of currents and 

voltages in a series OC at resonance is shown in Fig. 1.7. 

 

 
 

Fig. 1.7. The vector diagram of voltages in a series oscillating circuit 

 

Using the symbolic method, we will calculate the parameters of the parallel 

oscillating circuit. 

1. Complex circuit resistance 
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3. The current through the inductance (taking into account the condition 
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4. The current through the capacitor: 
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      , 

where 

2

2 1

m
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   . 

5. The current through active conduction 

jU jU
mG m m mGI U G U e G I e    , 

where 

2

2 1

m
mG m

I G
I U G

G
L




 

 
  

 

. 

Let us find out what , , , ,m mL mC mGZ U I I I  are equal to at the resonant frequency. 

As noted, the frequency 

0

1

LC
    

is called resonant, while  
1 1

0
c LX X

  . 

1. Resistance of parallel oscillating circuit 
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1
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that is, at the resonance frequency, the resistance of the parallel oscillating circuit 

is maximum, it is equal to 
resR  and has a purely active character. The dependence 

of resistance on frequency is shown in Fig. 1.8. At frequencies 
0  , the 

resistance has an active-inductive character, and at frequencies 
0   is 

inductive-active. 

2. The amplitude of the current through to inductance 

2

0 0
2

0 0

0

1

m m m res
mL m m

L

U I I R
I I I Q

L LG
L G C

L

  
 



    

 
  

 

, 

where 

0L L    

is the wave resistance of the inductance; 

res

L

R
Q


  

is the quality factor (the ratio of the resonant resistance to the wave resistance of 

the inductance). 

 
Fig. 1.8. Dependence of the resistance of the parallel oscillating circuit on the 

frequency 

 

3. The amplitude of the current through the capacitance 

0
0 2
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0

0

1
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mc m m m

c
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I U C I I Q
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where  

0

1
c

C



  

is wave resistance of the capacity. 

4. The amplitude of the voltage on the circuit 

2

2

0

0

1

m m
m m res
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, 
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that is, at resonance, the voltage on the oscillating circuit is maximum and is equal 

to 
m resI R . The dependence of the voltage on the parallel oscillating circuit on the 

frequency is shown in Fig. 1.9. 

Let’s analyze the concept of wave resistance in more detail 
L  and 

C  

0L

L L
L

CLC
    , 

0

1 1 1

1C

L

CC C
C

LC LC




    . 

It turns out that 
L C     and are simply called wave or characteristic 

resistance. It is numerically equal to the ratio of the voltage amplitude to the 

current amplitude of the reactive element at resonance. 

 

 
Fig. 1.9. Dependence of the voltage on the parallel oscillating circuit on the frequency 

 

Conclusions. 

1. At resonance, the resistance of the parallel oscillating circuit is maximum 

and purely active. 

2. The voltage amplitude on the parallel oscillating circuit at resonance is 

maximal and equal to m resI R . 

3. The value  

L

C
  

is called wave or characteristic resistance. 

4. The ratio of the resonant resistance of a parallel oscillating circuit to the 

wave (characteristic) resistance is called the quality factor. 

5. At resonance, the currents through the reactive elements of the parallel 

oscillating circuit are maximum. They exceed the source current by Q  times, so 

this phenomenon is called current resonance. 

After carrying out similar calculations, it is possible to draw appropriate 

conclusions for a series oscillatory circuit. 

Resistance of the series oscillating circuit 
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2
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1
resZ R L R R
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, 

this is, at the resonance frequency, the resistance of the series oscillating circuit is 

maximum, it is equal to 
resR  and has a purely active character. The dependence of 

resistance on frequency is shown in Fig. 1.10. 

6. The amplitude of the voltage on the inductance 

0 0
0
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, 

where  

LQ
R


  

is quality factor (ratio of the wave resistance of the inductance to the resonant 

resistance). 

7. The amplitude of the voltage on the capacitor 

2

0
2

0 0

0

1

m m C
mC m m

I E
U E U Q

C R
C R L

C




 



   

 
  

 

. 

At resonance, the voltages on the reactive elements of the series oscillating 

circuit are maximum. They exceed the source voltage by Q  times, so this 

phenomenon is called voltage resonance. 

 
Fig. 1.10. Dependence of the resistance of the parallel oscillating circuit on the 

frequency 

 

8. The amplitude of the current through the circuit 
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2
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0
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m m
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, 
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that is, at resonance, the current through the oscillating circuit is maximum and is 

equal to m

res

U

R
. The dependence of the current amplitude through the successive 

oscillating circuit on the frequency is shown in fig. 1.11. 

 

 
Fig. 1.11. Dependence of the current amplitude through a series oscillating circuit on 

the frequency 
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1.2. Frequency characteristics of parallel and series oscillating circuit 

 

Let’s examine the amplitude-frequency characteristic (AFC) is  T j  and 

the phase-frequency characteristic (PFC) is    arg T j


      for the transfer 

function of the parallel oscillating circuit 

       0

0
000

u

u I

I

j
jj m m m

j j

mmm

U U e U
T T j e Z e
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     . 

Accordingly 

  2

2

1

1
T j z

G
L






 
 

  
 

, 

   

1

arg

C
Lz arctg

G





 
 

   
 
 

. 

When 0  ; 0Lz L  ; 0z   and all the setting current will flow 

through the inductance, the circuit voltage will lead the setting current by 
2


, so 

  0 2
u I


     . 

When  ; 
1

0Cz
C

  ; 0z  . Thus, the voltage on the circuit will lag 

behind the current by 
2


, а 

  0 2
u I


      . 

When 0   the circuit resistance is maximum and purely active 
1

z
G

 , the 

voltage on the circuit coincides in phase with the current, i.e   0
0u I

     . 

Examples of vector diagrams of currents and voltages at 0   (in this case 

0  ) are given for a parallel oscillating circuit in fig. 1.12,a and the series 

oscillating circuit in fig. 1.12,b. 

 

  
a b 
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Fig. 1.12. Examples of vector diagrams of currents and voltages 

Graphs of AFC and PFC for 
 

0

m

j

U
T

I


  are shown in fig. 1.13. 

 

 
Fig. 1.13. Graphs of AFC and PFC 

 

For a series oscillating circuit, the form of dependences of AFC and PFC is 

similar, considering that for him the transfer function  
m

j

m

I
T

E


 . 

Let us derive the expressions for frequency response and frequency response 

of a parallel oscillating circuit using parameters – Q  and 0  (the same expressions 

can be obtained for a series oscillatory circuit). 
jarctgQve  

   
  0 00

0 0

1 1 1

1 1
1

m

j j

j

U
T Z

Y CI G j G j
j G LG

 

  
   

     
         

  

   
2

0

0

1 1 1

1 11
jarctgQνG jQv G Qv eG jQ



 

  
       

  

, 

where 

0

0

v


 

 
  

 
 

is a relative imbalance, hence 
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2

1

1
T j

G Qv
 



; 

  arctgQv    . 

Such an amplitude-frequency characteristic is called a resonance 

characteristic of a parallel oscillating circuit. The AFC has the maximum value at 

the resonance frequency 

   0 0max

1
T j T j

G
      , PFC 

 0
0


  . 

The resonant characteristic of the circuit is usually normalized with respect 

to its maximum value. The normalized AFC 

 
 

  2 2

max

1

1

T j
T j

T j Q v





 


 

has a maximum value that is equal to unity regardless of the values G. The 

normalized AFC is convenient for comparing oscillating circuits with different 

quality factors: the higher the quality factor of the oscillating circuit, the sharper 

its resonance curve (Fig. 1.14). 

 
Fig. 1.14. Resonance characteristics of oscillating circuits 

 

AFC has the property of geometric symmetry, i.e  

  0
0T j T j






 
  

 
. 

In other words, the resonance frequency of the circuit is the geometric mean 

for any pair of frequencies –   and  , at which the AFC of the circuit takes 

equal values 2

0     . On the other hand, the PFC values for the two 

frequencies –   and   differ only in signs 

  0
0


  



 
   

 
. 

An important characteristic of the oscillating circuit is the bandwidth, which 

is defined as the frequency band at the boundaries of which the AFC value of the 

circuit is 
1

0,707
2

 
 
 

 of its maximum value. It is denoted by 

 2 2n nor  . 
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According to fig. 1.15 
1 12 n     . 

 

 
Fig. 1.15. AFC of the oscillating circuit 

 

Let’s derive the dependence between the bandwidth, the quality factor and 

the resonant frequency of the circuit. 

   1 1

1
0,707

2
T j T j    ; 

 1
2 2
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1 1

21
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2 2

1 1Q v  ; 
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01
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; 

2 2

1 0

0 1

1

Q

 

 


 . 

 

On the property of geometric symmetry – 2

1 1 0    . Letʼs replace – 2

0  in 

the numerator of the previous equality on – 1 1  , we will get 
2

1 1 1

0 1

1

Q

  

 


 , 

 1 1 1

0 1

1

Q

  

 


 , 

0
1 1

Q


   , 

or 

0
1 1

Q



    . 
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Thus, the bandwidth of the oscillating circuit is directly proportional to the 

value of the resonant frequency and inversely proportional to its quality factor 

0

1 1

Q


 




, 

0

1 1

Q





  
. 

This expression is also used to determine the quality factor of the circuit 

based on the results of measuring its resonant frequency and bandwidth. 

The frequency band at the borders of which the AFC value is 0,1 (0,01; 

0,001) from its maximum value is called the interference band. 

The selective properties of the oscillating circuits are estimated by the 

squareness factor. The squareness factor is the ratio of the interference band to the 

transmission band 

1 1

k k
nK

 

 








. 

It can be shown that – nK  of a single OC when counting the interference 

band at the level of 0,1 from the maximum value is approximately equal to 10. 

In order to improve the selectivity of oscillating systems in modern radio 

engineering equipment, along with single OCs, coupled circuits are used. 

The most widely coupled OCs are used as amplifier loads in intermediate 

frequency amplifiers, where it is necessary to obtain an amplitude-frequency 

response close to a rectangular one. 

In this connection, the task arises: on the basis of knowledge about single 

oscillating circuits, to determine the types and properties of connected oscillating 

circuits, to characterize these properties and to obtain a mathematical ratio of 

parameters. 
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1.3. Types of connection between circuits, their comparative assessment 

 

Two circuits are said to be connected if energy from one circuit passes to the 

other. The circuit fed directly from the generator is called primary, and the circuit 

in which oscillations occur under the action of the primary circuit is called 

secondary. 

The connection between circuits can be through a common electric or 

magnetic field or through a common resistance. 

Depending on the nature of the connection, there are schemes: 

1) with capacitive connection (external and internal); 

2) with magnetic connection (transformer and autotransformer); 

3) with mixed connection. 

The degree of interaction of the circuits is estimated by the coefficient of 

connection, which is generally determined by the ratio 

1 2

conK


 
 , 

where con  – resistance of the element of connection; 1 2   – reactive 

resistances of the primary and secondary circuits have the same name as the 

element of connection. 

This formula is suitable for circuits with transformer, autotransformer and 

internal capacitive connection. 

The coefficient of connection shows what part of the electromotive force 

actually induced in the secondary circuit is of the limiting value of the 

electromotive force that could be induced by the primary circuit in the secondary 

2

2max

E
K

E
 . 

The coefficient of connection can take values from 0 to 1 and is often 

expressed as a percentage. 

Consider the scheme with an external capacitive connection (Fig. 1.16). 

Such schemes find the most practical application in ВТЗ, because they make 

it possible to seal the primary and secondary oscillating circuits, and to change 

the connection between them using conC . 

 

 
 

Fig. 1.16. AFC of the oscillating circuit 
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The degree of influence of one circuit on another is determined by the 

capacity of this capacitor. The 
conC  capacitor and the secondary circuit are 

connected in series. When the capacity of the capacitor 
conC  increases, its 

resistance decreases and its current, that supplies the secondary circuit, increases, 

that is, when 
conC  increases, the connection between the circuits 

  1 2

con

con

C
k

C C C Cзв


 
, 

increases and when  

1 2
con

k

con

C
С С С

C C
  


. 

The resonant frequency of the connected circuits 

 
0

1

conL C C
 


 

will change when the connection between the circuits changes, which is not 

desirable. Therefore, the capacity – conC  is chosen much smaller than the capacity 

of the circuit – conC C . 

In the scheme with an internal capacitive of the connection (Fig. 1.17), the 

connection between the circuits is carried out through the capacitor – conC  of the 

connection. 

Due to the primary circuit, a variable potential difference occurs on the 

capacitor – conC , under the action of which a current is created in the secondary 

circuit. 

 
Fig. 1.17. Connected oscillating circuits with internal capacitive of the connection 

 

In coupled circuits with internal capacitive of the connection, conC  is 

connected in series with the capacitors of the circuits and the equivalent capacity 

of each of the circuits will be determined by the smaller of the capacities. In order 

for the circuit tuning frequency to be determined by the circuit capacity and 

practically independent of – conC , the connection capacity is chosen much larger 

than the circuit capacity. At the same time 

1 2

con

C C
k

C

 

 , 
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where 

1
1

1

con

con

C C
C

C C

 


; 

2
2

2

con

con

C C
C

C C

 


. 

Consider connected circuits with a transformer connection (Fig. 1.18). 

The connection between the circuits is carried out through the magnetic flux 

common to the coils, that is, due to the mutual induction M . 

The current 1I  creates a magnetic flux around the coil, part of which crosses 

the turns of the coil of the secondary circuit, creating an electromotive force of 

mutual induction in it. Under its action, a mutual induction current 2I  is created in 

the secondary circuit, which releases some active power in the active resistance. 

 
Fig. 1.18. Connected oscillating circuits with a transformer connection 

 

Thus, it is possible to talk about the transfer of energy from the primary 

circuit to the secondary circuit. The degree of mutual influence of the circuits 

depends on the distance between the coils and their mutual location. The smaller 

the distance between the coils, the stronger the connection between the circuits. 

When the coils are arranged perpendicular to each other, the electromotive 

force induced in the coil of the secondary circuit is zero even with a small distance 

between the coils. By turning one of the coils, it is possible to change the value of 

the connection between the circuits. 

1 2 1 2 1 2

ззX M M
k

X X L L L L



 
   . 

With autotransformer connection (Fig. 1.19), the part of the coil of the 

primary circuit, common to the primary and secondary circuits, serves as a 

communication element. Due to the currents of the primary circuit, a variable 

potential difference occurs on the coil, which creates a current in the secondary 

circuit. Accordingly, the correlation coefficient is equal to 

11

1

1

con

зоп

зв

L
k

LL L

L

 




. 
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The considered schemes do not exhaust the variety of systems of connected 

circuits: by combining different types of communication and parameters of the 

circuits themselves, it is possible to create different types of systems of connected 

circuits. For example, an inductive-capacitive connection between circuits. 

 

 
 

Fig. 1.19. Connected oscillating circuits with an autotransformer connection 

 

Despite the difference in connection types, the processes in connected 

oscillatory circuits are subject to general laws. 
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1.4. Frequency characteristics of connected oscillatory contours at 

different degrees of connection 

 

When considering physical processes in connected OCʼs, we talked about 

the transfer of energy from the primary circuit to the secondary circuit. It turns 

out that not only the primary circuit affects the secondary circuit, excites 

electromotive force in it, but also the secondary circuit affects the primary circuit, 

changing its mode. Letʼs consider in more detail the influence of the secondary 

circuit on the primary one using the example of circuits connected inductively 

(Fig. 1.18). 

We will have for the intrinsic resistances of the primary – 1Z
 

 
 

 and 

secondary – 2Z
 

 
 

circuits 

1 1 1 1 1 1 1

1 1

1 1
Z R j L R L R jX

j C C
 

 

  
        

 
; 

2 2 2 2 2 2 2

2 2

1 1
Z R j L R L R jX

j C C
 

 

  
        

 
, 

Where – 1X  і 2X  are reactive resistances of the primary and secondary 

circuits. 

For the primary and secondary circuits, we will compile equations using the 

method of circuit currents, taking into account the markings made 

1 1 2Z I m j M I m E m
   

  ; 21 2 0j M I m Z I m
  

   . 

Let’s find the solution of this system by the method of determinants 

1 2 2
1 2

2

Z j M
Z Z M

j M Z








 



 
    

 
 

. 

21

20

m

m

E j M
E Z

Z




 



 
   

 
 

, 1
2

0

m m
Z E j M E
j M
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Therefore, 
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; 

2

2

2 2
1 2

m
m

j ME
I

Z Z M




 


 

 
. 

In practice, the following designations are used: 

conM X   

is reactive resistance of the connection,  
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2

int

2

conX
Z

Z
  

is reactive resistance introduced into the circuit, which reflects the influence 

of the second circuit on the first. 

Let us consider in more detail the nature of the introduced resistance 
2 2 2 2 2 2

2 2 2 2
int int int2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

con con con con con conX X X R jX X X R X X
Z j R jX

Z R jX R X R X R X

 
      

   
. 

In this way, the introduced resistance is complex: 

– its active component increases the losses of the primary circuit, worsens 

its quality factor, and expands the bandwidth; 

– the reactive component of the introduced resistance is opposite in nature to 

the own reactive component of the primary circuit and leads to its disorder. 

The magnitude of the applied resistance can be changed by adjusting the 

circuits or changing the connection between them. 

Let’s investigate the dependence of the active component of the introduced 

resistance on the coefficient of the connection and the frequency of the input 

signal. We consider that the primary parameters of both circuits are the same. 

Then 
2

int 2 2

conX R
R

R X



. 

The dependence of this type is a bell-shaped curve, which reaches a 

maximum at the frequency – 0  , where – 0x  . Then, 
2 2

int max 2

con conX R X
R

R R
   

or 
2

int maxconX R . 

It can be seen from this expression that the introduced resistance –  int maxR  is 

always less than – R . At a certain value of – intХ  at the resonance frequency 

0 intR R  . 

Letʼs determine the condition for the fulfillment of this equality 

0 0 0; / 1; / 1; 1intХ М kL R kL R k R kQ         . 

The product kQ  is called the connection parameter. The condition 1kQ   is 

a critical connection condition. If 1kQ  , then the connection is weak, if 1kQ  , 

then the connection is strong. 

The graphs of the dependence of intR  on ω for different connection 

parameters are shown in Fig. 1.20,a. Letʼs investigate the dependence 
2

int 2 2

conX X
X

R X
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on –   for different connection parameters (
conХ ). At any 

conХ  at the frequency 

0 0х   , therefore,  0 0intХ   . Near the frequency 
0Х R  . Thus, a 

simplified formula  
2

2

int 2
( )conX X

X kQ X
R

   

can be derived. 

It can be seen from this expression that for small connection parameters 

1kQ   (weak connection) 
intX  is always less than X . When 1kQ   (critical 

connection) 
intX  can reach X , and when 1kQ   (strong connection) there are two 

frequencies at which 
intХ Х . 

The graph of the dependence of 
intX  on the frequency for various connection 

parameters is shown in Fig. 1.20,b. The dependence of the secondary circuit 

current on the frequency of the input signal at various connection parameters is 

shown in Fig. 1.20,c. 

It is not difficult to explain the course of the resonance curves using the 

theorem on the maximum average power in the load. At the same time, the internal 

resistance of the generator should be understood as the value of the input 

resistance, and the load should be understood as the value of the resistance of the 

primary circuit. 

It is necessary to pay attention to the fact that the second condition of the 

theorem is always fulfilled at the resonance frequency at any degree of connection 

 0n intХ Х Х Х     . 

With a weak connection intR R  and at the frequency 0  , one of the two 

conditions for transmitting the maximum average power is not fulfilled. 

Therefore, the current 2I  at the resonant frequency is less than the maximum 

possible (Fig. 1.20,c). 

At the critical connection intR R , at the frequency 0   (Fig. 1.20,a), 

therefore, at the resonance frequency 2 2maxI I  (Fig. 1.20,c). 

With a strong connection at the resonant frequency intR R  (Fig. 1.20,a), that 

is, one of the conditions for transmitting the maximum average power is not 

fulfilled at this frequency. However, both conditions are fulfilled at two 

frequencies m  and m , at which the current 2I  becomes maximally possible. 

This leads to the appearance of the so-called two-humped frequency characteristic 

(Fig. 1.20,c). 
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a) 

 
b) 

 
c) 

Fig. 1.20. AFC of connected oscillatory circuits for different degrees of connection 

 

At 0,67kQ  , the bandwidth of connected circuits, calculated at 0,707  of the 

maximum value, will be the same as that of a single circuit having the same quality 

factor. 

At a critical connection ( 1кQ  ), the bandwidth is 2  times wider than that 

of a single oscillating circuit. With strong connection ( 1кQ  the AFC of the 

connected oscillating circuits will be double-humped, and the dip of the double-

humped curve is greater, the more кQ  differs from unity. Usually, the connection 

is increased until the dip of the curve reaches the level of 0,707  from the maximum 

AFC value ( кQ in this case is equal to 2,41). In this case, the bandwidth of the 
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connected circuits is 3,11 times greater than the bandwidth of a single oscillatory 

circuit (when 
зкк оккQ Q ), and the coefficient of squareness 2,32nK  , which is 

significantly better than that of a single oscillatory circuit and connected 

oscillating circuits with a weak or critical connection. 
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1.5. The method of setting connected circuits 

 

In practice, they often strive to obtain the maximum value of the current 
2I  

or the maximum power 
2P  in the secondary circuit. Such a problem can arise, for 

example, when the transmitter is connected to the transmitting antenna. This is 

achieved by setting the connected circuits accordingly. There are different ways 

to set it up. 

I method. The setting of connected circuits is carried out by changing the 

parameters of only the primary circuit (for example, the capacity 
1C ); the resulting 

resonance is called the first resonance. 

 
Fig. 1.21. Setting up connected circuits by changing the parameters of only the 

primary circuit 

 

This resonance can be determined by the maximum current in the primary or 

secondary circuit. In fig. 1.22 shows the dependence of the currents in the primary 

and secondary circuits on the setting of the primary circuit. 

 
Fig. 1.22. Dependence of currents in the primary and secondary circuits on the setting 

of the primary circuit 

 

Method II. The setting of connected circuits is carried out by changing the 

parameters of only the secondary circuit, for example, by changing the capacity 

2C . In this case, a secondary self-resonance occurs. This resonance can be 

determined by the maximum current in the secondary circuit. 
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In fig. 1.23 shows the dependence of currents in the primary and secondary 

circuits on the setting of the secondary circuit. 

 
Fig. 1.23. Setting up linked circuits by changing the parameters of only the secondary 

circuit 

 

Method III. The setting of connected circuits is carried out by changing the 

parameters of one of the circuits and the connection resistance. Resonance in this 

case is called complex. 

It can be shown that with complex resonance, the maximum of the secondary 

current does not depend on which of the circuits is set to resonance. This method 

is used in low-power radio stations. 

Method IV. The setting of the connected circuits is carried out by changing 

the parameters of both circuits and the connection resistance. In this case, the 

resonance is called complete. At the same time, the primary circuit is first 

configured with the secondary circuit open. Then the secondary circuit is set up. 

Finally, the optimal connection resistance is selected. 

Although the maximum secondary current with full resonance tuning is the 

same as with complex resonance tuning, full resonance setting has the advantage 

that the absolute value of the connection resistance turns out to be smaller than 

when tuning to a complex resonance, and is calculated in units of resistance 

(Ohm). 

Oscillating circuits are used in various radio technical devices, but they are 

mainly used in radio transmitting and receiving devices. 

In transmitters, the values of capacitance and inductance of the circuit 

determine the frequency of oscillations at which the transmitter operates. By 

changing the capacitance or inductance of the circuit, the frequency of oscillation 

can be changed. 

In the receiving device, OC determines the selectivity of the receiver, that is, 

its ability to single out the signal of one specific transmitter from the set of signals 

received by the antenna. By changing the capacitance or inductance of the 
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oscillating circuit, we can select the desired one from the signals received by the 

antenna, that is, we can tune the receiver to one or another frequency.  

Oscillating circuits also solve a number of other radio engineering problems: 

measuring frequency, coil inductance and capacitor capacity, filtering currents of 

different frequencies, etc. 

Coupled oscillating circuits are widely used in engineering, improve the 

selectivity of the resonant system, expand the bandwidth and allow for its 

adjustment. At the same time, they are characterized by the following 

disadvantages: an increase in the number of elements of the circuit, that reduces 

its reliability, the complexity of tuning, and a decrease in quality factor. 
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1.6. Oscillating circuits of II and III types 

 

Oscillating circuits of the so-called ІІ and ІІІ types are used for coordination 

without changing the quality factor of the oscillating circuit with radio 

engineering devices. In fig. 1.24 shows the oscillating circuit of the II type. 

 
Fig. 1.24. Oscillatory circuit of the II type 

 

Letʼs determine the resonant frequency of this oscillating circuit. For the 

solution, we calculate the complex conductivity of the circuit: 

1 2

2 2
2 21 1 1 1 1 1

2 1 2 2 1 2

1 1

1 1

1 1( )
( ) ( )

R R
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R j L R L
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j
R L

R L
C


 

 




 




. 

At resonance, the reactive component of the conductivity turns into 0. 

Considering that active resistances are small relative to reactive resistances, we 

obtain a condition for determining 1  in the form 

 1 1 1 2 1 21/ 1/ ( 1/ ) 0L L C     . 

Hence 

1
2 2 2 2

0 1 1

1
1/ ( (

...m m

m m

H j
d d d d

 
  



 
   

. 

We will also determine the frequency of series resonance 2  in the oscillating 

circuit 2L C  on the condition that 

2 2 21/ 0L C   . 

Then 

2 21/ L C  . 

Thus, the AFC of the oscillating circuit (the dependence of the voltage on 

the oscillating circuit on the frequency) has a clearly defined maximum (at the 

frequency 1 ) and minimum (at the frequency 1 ) (Fig. 1.25). 
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Fig. 1.25. AFC of the oscillating circuit of the II type 

 

The oscillating circuit of type III is shown in fig. 1.26. 

 
Fig. 1.26. oscillating circuit of the III type 

 

Accordingly, its AFC is shown in fig. 1.27. 

 
Fig. 1.27. AFC of the oscillating circuit of type III 

 

The series resonance frequency 

2 21/ LC  , 

and the parallel resonance frequency 

1 1 2 1 2( ) /C C LC C   . 

 

Control questions and tasks 

 

1. In which mode of the circuit in the parallel circuit is the resonance of the 

currents observed ? 

2. How does the resonant impedance of the circuit behave when its quality 

factor changes ? 
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3. How will the transparency band of the parallel circuit change if the internal 

resistance of the electromotive force source decreases ? 

4. How to calculate the resonant frequency of a parallel circuit with: 

a) small losses; 

b) big losses ? 

5. How is the quality factor determined: a) of the loaded circuit; b) of an 

unloaded circuit ? 

6. At what frequencies does the input resistance of the parallel circuit have: 

a) a capacitive character; 

b) an inductive nature; 

c) an active character ? 

7. How much should the circuit be unbalanced so that the output voltage is 

halved ? 

8. Describe the processes that occur during free electromagnetic oscillations 

in a circuit. How to determine the period of oscillations ? 

9. Derive the equations of damping oscillations in an oscillatory circuit. 

10. What circuit resistance is called critical ? 

11. What is logarithmic decrement fading ? 

12. How do oscillations occur in an electrical circuit ? 

13. Under what conditions does voltage resonance occur ? 

14. Derive the formula for the resonant frequency. 

15. What is the quality factor of the circuit ? What does it depend on ? 

16. Why are the oscillations damped in a real circuit ? 
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CHAPTER 2. ELECTRICAL FILTERS 

 

One of the most common devices in communication and radio technology 

are electrical filters. They are used to isolate or suppress certain oscillations, 

separate channels, and form the spectrum of signals. The need to create filters 

arose in connection with solving the problems of the condensed use of 

communication lines, which transmit messages on several channels at the same 

time with the distribution of these channels by frequency. At the same time, each 

channel has its own frequency band. 

An inductor and a capacitor, which are used to separate the frequency band 

from the upper frequency band, turned out to be the simplest filtering device. 

In the thirties of the 20th century, the development of the modern theory of 

the construction of electrical filters began, based on the use of strict mathematical 

methods of the best approximation of functions developed by the mathematician 

P.L. Chebyshev, his students and followers. The use of these methods made it 

possible to ensure the construction of electrical filters with the required 

characteristics with the minimum required number of elements. Today, the 

practical use of electrical filters is quite diverse. They are used in radio 

communication equipment, radio relay communication, transmission systems 

with frequency distribution of channels, automation, instrument building and 

other areas of technology where the principle of frequency distribution is used. 

An electric filter (EF) is a quadripole that passes without attenuation 

(attenuation or damping will be denoted as working attenuation in the theory of 

quadrupoles pA ) or with a small attenuation of oscillations of certain frequencies 

and passes with a large attenuation of oscillations of other frequencies. 

The band of frequencies in which the attenuation is small is called the 

passband. The frequency band in which the attenuation is large is called the 

stopband (delay). Between these bands is a transitional area. 

According to the location on the frequency scale of the passband, the 

following filters are distinguished: 

– low-pass filter (LPF), in which the passband is located on the frequency 

scale from 0   to some limiting frequency p  , and the stopband from the 

frequency s   to infinitely high frequencies; 

 

 
Fig. 2.1. Bandwidth and delay for LPF 
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– high-pass filter (HPF) with a passband from the frequency p   to 

infinitely high frequencies with a stopband from 0   to 
s  ; 

 

 
Fig. 2.2. Bandwidth and delay for HPF 

 

– bandpass filter (BF), in which the passband 1 2p p   is located between the 

stopband 10 s  і 2s   ; 

 
Fig. 2.3. Bandwidth and delay for BF 

 

– blocking (rejector) filter (BF or RF), in which there is a stopband 1 2s s   

between the passband 1 2p p  ; 

 
Fig. 2.4. Bandwidth and delay for RF 

 

– comb filter (GF), which have several passband and stopband 

According to the used elemental base, several classes of filters have been 

distinguished in the modern period. 

Historically, the first are passive filters containing elements L and C. They 

are called LC-filters. 

In many cases, quite high selectivity was required in practice (the difference 

in the attenuation in the passband and stopband is tens of thousands of times). 

This led to the appearance of filters with mechanical resonators: quartz, 

magnetostrictive, electromechanical. 
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The most significant achievements in the field of the theory and design of 

filters are connected with the successes of microelectronics. The requirements for 

the microminiaturization of radio-electronic equipment led to the rejection of the 

use of inductors that have large dimensions. Thus, active RC-filters appeared, 

consisting of resistors, capacitors and active devices. These filters can be made in 

the form of a micromodule design or an integrated microcircuit. The creation of 

digital communication systems and achievements in the field of digital computers 

stimulated the formation of filters based on elements of digital and computing 

technology - digital filters. 
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2.1. Conditions for passing a reactive filter 

 

Letʼs find out the conditions under which a reactive quadrupole will be an 

electric filter, that is, a device that has a passband in some frequency range, and a 

stopband in another. To do this, let’s turn to the theory of quadripoles and consider 

the simplest L-shaped quadripole (Fig. 2.5). 

 

 
 

Fig. 2.5. The simplest L-shaped quadripole 

 

Assume that 1Z 1 and 2Z  are purely reactive resistors. According to the 

theorem about the maximum average power, maxP  in the load will be in the case 

when the resistance of the generator and the resistance of the load are complex 

conjugate, i.e 

1

2 2

1 1

1 1 1 1H

Г Г

R jX

j
R jX R X

  

 

. 

Transforming this expression, we get 

1 1

2 2

( ) 1 0H H

Г Г

R X X R
j j

R X R X
     . 

Hence we have two equalities: 

1 2Н ГR R Х Х   

and 

1

2

1H

Г

R X

R X
  . 

It can be seen from the first expression that 1X  and 2X  must have opposite 

signs, that is, 

1

2

0
Z

Z
 . 

Accordingly, it follows from the second that 

1

2

1
X

X
    

or 
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1

2

1
Z

Z
  . 

Combining these inequalities together, we get 

1

2

1 0
Z

Z
   . 

Since 
1Z  and 

2Z  are frequency dependent, the resulting inequality will hold 

for a specified band of frequencies called the passband. 

To obtain a filter, it is necessary to include reactivities of different signs in 

the step structure in the longitudinal and transverse branches, that is, capacitance 

and inductance (Fig. 2.6, a, b), because with the same reactivities, it will always 

be 

1

2

0
Z

Z
  

and the transmission condition will not be fulfilled. 

 

  
a) b) 

 

Fig. 2.6. Links of electric filters 
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2.2. Requirements for electrical characteristics of filters 

 

The selectivity of the filter (the degree of demarcation of passing and non-

passing bands) is determined by the steepness of the operating attenuation 

characteristic. The greater the steepness of this characteristic and the smaller the 

attenuation in the passband, the better the selectivity of the filter and thus the 

lower the level of interference from damped oscillations. In an ideal case, the 

characteristic of the operating attenuation, for example, for a low-pass filter, has 

the form shown in Fig. 2.7. 

 

 
 

Fig. 2.7. Characteristics of the working attenuation of an ideal low-pass filter 

 

The operational amplitude-frequency characteristic 

    expp pH j A    

is associated with the operational attenuation. It is obvious that the amplitude-

frequency characteristic of an ideal low-pass filter has the form shown in Fig. 2.8. 

 

 
Fig. 2.8. AFC of an ideal LPF 

 

Real filters (filters that consist of real elements) have operating attenuation 

characteristics and amplitude-frequency response that differ from ideal ones. 

The requirements for the electrical characteristics of the filters are set in the 

form of restrictions imposed on these characteristics. Thus, the working 

attenuation in the passband should not exceed some maximum permissible value 

maxpA , and in the stopband it should not be below some minimum permissible 

value minpA . Thus, knowing the requirements for pA , you can list these 

requirements for AFC, where: 

 
2

\maxexp( 2 )p pH j A   , 



41 

0 p   ; 

 
2

minexp( 2 )p pH j A   , 

s  . 

The characteristics of the designed filters must comply with these 

requirements. 

In addition to the requirements for the frequency dependence of the operating 

attenuation, there may also be requirements for the phase-frequency characteristic 

of the filter (permissible deviations from the linear law), nonlinear distortions, and 

other characteristics and parameters of the filter. 

The ideal frequency characteristics of a filter cannot be realized, the real 

frequency characteristics can only approximate them with one or another degree 

of accuracy depending on the complexity of the filter scheme. 

Electric filters with a transfer function of the form 

1

1 1 0

1
( )

...m m

m m

H p
b p b p b p b




   

                         (2.1) 

are called polynomial. The amplitude-frequency characteristic of such filters 

looks like this 

 
2 2 2 2

0 1 1

1

...m m

m m

H j
d d d d


  




   

.                  (2.2) 

And, thus, the working attenuation can meet the specified requirements with 

the proper choice of the degree of the polynomial (order of the filter) and 

coefficients kd . 
2 2 2 2

0 1 110lg ...m m

p m mA = d ω +d ω + +d ω +d


                     (2.3) 

Among the polynomial filters, the Butterworth and Chebyshev filters are the 

most widely used. Note that in the theory of filters, it is customary to use the 

normalized frequency for the low-pass filter 

П




  . 
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2.3. Butterworth filters 

 

If in formulas (2.2) and (2.3) we accept the coefficients 
1 2 1... 0md d d     , 

0 1md d  , then taking into account the normalized frequency we get 

  
 

2

2

0

1

1
p m

H jΩ =
+d Ω

  (2.4) 

 2

0

1
ln 1

2

m

pA = +d Ω .                                         (2.5) 

Polynomials 

  2m

mВ     

are known as Butterworth polynomials. 

Therefore, the filters in which the square of the AFC is described by the 

expression (2.4) and the working attenuation by the expression (2.5) were named 

Butterworth filters. 

It follows from formulas (2.4) and (2.5) that at the frequency 0   the value 

of the square of AFC is equal to one, and the working attenuation is zero. As the 

frequency increases, the square of the AFC of the Butterworth filter decreases and 

falls to zero, and the operating attenuation increases smoothly to infinity. Thus, 

expressions (2.4) and (2.5) approximately reflect the characteristics of an ideal 

filter. 

In order for these characteristics to satisfy the requirements of the filter, it is 

necessary to have an operating attenuation (2.5) in the passband less than maxpA , 

and in the stopband is greater than minpA . The first condition can be satisfied if at 

the limit frequency  1   we put equality 

  1
max

p Ω= pA Ω | = A ,  

Then 

  2  

0   01 2 ; 1Ap max

p maxd exp A d e    . 

2 max

0 1ApE d = e   

is called the attenuation unevenness coefficient in the passband of the filter. If 

maxpA  is measured in decibels, then the correct ratio is  

0,1 max10 1ApE   . 

Taking into account the above designations 

  
2

2 2

1

1
p m

H jΩ =
+ E Ω

,                                        (2.6) 

2 21
ln 1

2

m

pA = ( + E Ω ) [Hп],                                (2.7) 

 2 210 1 m

рА lg E    [Дб].                                       (2.8) 

Let us present the graphic dependences of the obtained functions (Fig. 2.9). 
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Fig. 2.9. AFC and operational attenuation of Butterworth filters 

 

Note that the steepness of the frequency characteristics depends on the power 

of m, i.e. the greater the m, the greater the steepness of the characteristics. 

Thus, to meet the requirements in the passband, it is necessary to choose the 

appropriate order of the filter m, it can be determined under the condition 

 3p pminA A  ; 
22 2

31 Apminm e+ E Ω > ; 

22

3 2
 1)

1
( Apmm inΩ

E
e  . 

After logarithmization, we get 
2 min

232 ·
1

·
Ape

m ln ln
E


  . 

Finally we have 
2 min

32

1
ln / 2ln

Ape
m ( ) ( Ω )

E


 ,                               (2.9) 

0,1 min

32

10 1
lg / 2lg

Ap

m ( ) ( Ω )
E


 .                           (2.10) 

The transfer function of the Butterworth filter can be obtained from formula 

(2.6), if j р  , then 

      2

2

2

1

1
p p p m

H p
+ E

H p H p
( p )

 


 .                          (2.11) 

Letʼs determine the roots of the denominator, that is, the poles of the function 

   ·р рН р Н р separately for even and odd values of m . 

For even values of m  
2 21 0mE p   

and 
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1 2 1к

m
m

p
E

 , 

1,  2, 2k m  . 

Because 

     1 2 1 2 1 2 1exp j k cos k jsin k           , 

then 

2 1

2 1
1 1 1 2 1 2 12 2 cos sin

2 2

j

j( k )π

к

( k )π
k km me = e = ( π+ j π)p

m m m m mE E E









. 

For odd values m 
2 21 0mE p  . 

Because 

     1 2 2 2exp j k cos k jsin k     , 

Then 

2

2
1 1 12 2 cos sinк

j

j kπ

kπ
k km me = e = ( π+ j π)p

m m m m mE E E
 , 1,2 2k m  . 

After defining the roots, the expression (2.11) becomes 

    2

1 2 2

1

...
p

m

p
E (p p )(p p ) (p p )

H p H p
 

 


. 

Having chosen the poles located in the left half-plane of the complex variable 

p, we obtain the transfer function of the physically realized Butterworth filter of 

the form 

  2

1 2 2

1

... m

p
E (p p )(p p ) (p p )

H p H
  

 ,                        (2.12) 

Where 
1

H
Е

 . 

Using the value  m mВ     of the Butterworth polynomial, it is possible to 

represent the frequency characteristics of the Butterworth filter in the following 

form: 

   
2

2 21/ 1 mp EH + B Ωj     ;                                  (2.13) 

   2 21
ln 1

2
mp EA + B Ω      [Hп];                           (2.14) 

   2 210lg 1 mp EA + B Ω      [Дб].                           (2.15) 

Butterworth filters are also called filters with maximally flat attenuation in 

the passband. 
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2.4. Chebyshev filters 

 

Formulas of the type (2.13)-(2.15) are universal in their structure. It is 

enough to replace the Butterworth polynomial in them with some other 

polynomial and you can get a new type of filter. For example, if instead of the 

polynomial  m   we use the so-called Chebyshev polynomial, then we get 

   
2

21/ 1p mH + E Ωj T    ;                                (2.16) 

   2 21
ln 1

2
mp EA + T Ω      [Hп];                           (2.17) 

   2 210lg 1 mp EA + T Ω      [Дб].                           (2.18) 

where  mT   is a Chebyshev polynomial of degree m , E  is the unevenness 

coefficient in the passband of the filter. 

Filters with characteristics (2.16)-(2.18) are called Chebyshev filters. 

Consider six Chebyshev polynomials:  0 1T   ,  1T    ,   2

2 2 1T     , 

  3

3 4 3T      ,   4 2

4 8 8 1T       ,   5 3

5 16 20 5T        . 

Any Chebyshev polynomial for 2m   can be calculated by the recurrent 

formula      1 22m m mT T T       , therefore relations (2.16)-(2.18) satisfy 

general expressions (2.1) - (2.3) characteristics of polynomial filters. There is a 

single trigonometric form of writing Chebyshev polynomials in the interval -
1 1   : 

   ·mT cos m arсcos   .                                 (2.19) 

Actually:    0 0· 1Т cos arсcos    ,    1 1·T cos arсcos     , 

    2

2 2 2· 1 2 1T cos arсcos       . Outside the interval 1 1     polynomials 

 mT   are also given in trigonometric form 

   ·mT ch m arcch   .                                   (2.20) 

The analysis of the behavior of Chebyshev polynomials shows that in the 

interval 1 1    the angle arccos    changes from  1at     to a value equal 

to 0  1at  , and   1mT m   times reaches values equal to “+1” or “-1”. Outside 

the interval 1 1      mT   increases monotonically according to formula (2.20). 

According to the formula (2.18), the operating attenuation of the Chebyshev 

filter is zero at those frequencies where the polynomial  mT   turns to zero. At 

frequencies at which   1mT    , the operating attenuation reaches the value 

   2 0,110 1 10 1 10 1Apmax

р pmaxА lg E lg A      . 

With increasing values of the polynomial  mT   at frequencies 1  , the 

working attenuation  pA   also increases monotonically. 

In fig. 2.10 shows the working attenuation graph of the fourth-order 

Chebyshev filter. 
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Fig. 2.10. The working attenuation graph of the Chebyshev filter 

 

Chebyshev filters are also called filters with equal-wave characteristics in 

the passband. 

Consider the frequency dependence of the square AFC of the Chebyshev 

filter for different values of m (Fig. 2.11). 

 

 
 

Fig. 2.11. AFC of the Chebyshev filter of different orders 

 

In order for the filter characteristics to meet the requirements in the passband, 

it is necessary to choose the order of the filter m  from the condition 

   2р p minН j exp A     , 

taking into account the expression (2.20) at 3    we get 

  
2 in

3

m

2

1
/2  

Ap

р p
e

E
m arch arch А in N



 


,                      (2.21) 

or 

  
0,1 min

2 3

1
/2

0
 

Ap

р B
E

m arch arch А in d


  .                       (2.22) 

Comparing the frequency characteristics of the Butterworth and Chebyshev 

filters, it can be seen that the Chebyshev polynomials are the polynomials of the 

best approximation. This means that for the same values of m, the Chebyshev 

filter in the passband has the greatest attenuation than the Butterworth filter. 

However, the working attenuation characteristic of the Butterworth filter in the 
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passband has a monotonic character and is therefore easier to adjust to eliminate 

distortions of the transmitted signals. The choice of the type of polynomial filters 

is determined by the specific conditions of their use in communication equipment 

and radio technical devices. 

To obtain the transfer function of the Chebyshev filter, we replace the 

operator j  with the operator p and pass from the function  
2

pH j  to the 

function 

      2 2

2 1

1 /m

р p p
+ E T (p j)

Н р H p H p   . 

Taking into account formula (2.19), we find the poles of the function  
2

pH p  

by solving the equation 

 2 2 · / 1 0E cos m arccos p j    .                             (2.23) 

The roots of this equation: 
2 1 2 1

cos
2 2

к

к к
π+ jchγ πp sh

m
sin

m






, k=1,2,                  (2.24) 

where 
1 1

γ= arsh
m E

. 

The roots in the left half-plane form multipliers of the type (р-рk), and the 

transfer function of the Chebyshev filter is constructed based on them 

  1

1 1 0

1

...m m

m

pH p
p +b p + +b p+b

H




 , 

where 1 1/ 2mН Е  . 
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2.5. Realization of electric filters 

 

Any filters, both polynomial and others, depending on the specifics of their 

application, can be implemented either in the form of passive LC-circuits or in the 

form of active RC-circuits. 

Passive LC-filters generally represent a reactive stepped four-pole connected 

between the generator Eг  with an active internal resistance 
гR  and a load with 

an active resistance 
нR . The input resistance of a reactive four-pole, loaded with 

resistance нR , is indicated in Fig. 2.12  1вхZ p . 

 
Fig. 2.12. Passive LC-filters 

 

If the filter from the side of clamps 1-1  ́is considered as a two-pole formed 

by a reactive four-pole and a load нR , then, knowing the expression  int1Z p , it is 

possible to realize this two-pole by one of the methods of synthesis of two-poles 

known in the theory of electric circuits. 

For example, the polynomial LPF of the fifth order  5m   is implemented 

in the form of one of the two schemes shown in Fig. 2.13. 

 
 

Fig. 2.13. Polynomial AFCs of the fifth order 

 

The number of reactive elements is determined by the order of the filter m . 

The Butterworth filter will differ from the Chebyshev filter by different values of 
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the reactive elements obtained in the process of implementing the corresponding 

transfer functions. 

Low-pass filters with fading bursts 

Schemes of stepped filters with damping bursts contain inductances or 

parallel oscillating circuits in the longitudinal branches and capacitors or series 

oscillating circuits in the transverse branches. Examples of such filters are shown 

in fig. 2.14, a and 2.14, b. 

 
a)        b) 

Fig. 2.14. Burst attenuation filter circuits 

 

The number of attenuation bursts is determined by the number of oscillating 

loops in the filter scheme. For the filters shown in fig. 2.14, the attenuation 

characteristic can have the form shown in fig. 2.15. 

 
Fig. 2.15. Attenuation characteristics of filters with bursts 

 

At the resonant frequency pf , the resistance of the parallel oscillating circuit 

included in the longitudinal branch (Fig. 2.14,a) is infinitely large (the attenuation 

of the filter goes to infinity (Fig. 2.15)). The resistance of the series oscillating 

circuit, included in the transverse branch of the filter (Fig. 2.14, b), at the resonant 

frequency is practically zero, and the circuit completely shunts the load (the 

attenuation of the filter at this frequency is infinite). 

The analytical recording of the attenuation of the low-pass filter with the 

given placement of the attenuation bursts is as follows: 

max2 21 ˆln 1 ( 1) ( )
2

pA

рА = e F Ω  
 

                                (2.25) 

Here is 2ˆ ( )F Ω  the so-called Chebyshev fraction. It is an odd fractional 

rational function of normalized frequency. 
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In many practical problems, the requirements for the attenuation 

characteristics of LPF with attenuation bursts are formulated as follows: the 

attenuation of the filter in the passband 0 0    should not exceed the specified 

value maxpA , and in the passband, starting from the frequency 
0

к
к

ω
Ω =

ω
, should not 

be less than some constant value minpA  min (Fig. 2.16). 

 
Fig. 2.16. LPF attenuation characteristics requirements 

 

To solve the corresponding approximation problem, one of the problems of 

the best approximation of functions is used, formulated and solved by E.I. 

Zolotaryov, a student of P.L. Chebyshev, and above all, the problem of a rational 

function of the given nth order, the absolute value of which in the interval 

1 1     did not exceed unity, and in the interval 1   the smallest absolute 

value of its value would be the maximum possible. 

In the passband, the attenuation characteristic of a low-pass filter with 

Zolotaryov characteristics will have an equal-wave character, and in the stopband, 

starting with the frequency k , the smallest attenuation value of such a filter will 

be the maximum possible compared to all other filters with the same values of n  

and maxpA . The graph of the frequency dependence of the attenuation of the filter 

with Zolotaryov characteristics for 5n   is shown in Fig. 2.17. 

A distinctive feature of these filters is the equality of the minima of the 

attenuation characteristic of the filter in the stopband, and the values of these 

minima are equal to the value of the attenuation of the filter at the limit of its 

stopband. 

 
Fig. 2.17. Frequency dependence of filter attenuation with Zolotaryov characteristics 
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Filters with the Zolotaryov characteristic can be considered as a special case 

of filters with the Chebyshev characteristic, when the minimum values of the 

attenuation characteristic of the filter in the stopband are aligned, and the number 

of attenuation bursts is the maximum possible at the selected value of n . 

High-pass filter 

We will begin the study of the principles of constructing high-pass filters by 

considering the essence of the frequency variable conversion method. 

From practice, it is clear that high-pass filters can be obtained from low-pass 

filters, if in the latter each inductance is changed to a capacitance, and each 

capacitance to an inductance (Fig. 2.18). 

 
Fig. 2.18. Conversion of LPF to HPF 

The attenuation of the low-pass filter is an even function of the frequency 

, accordingly, the attenuation curve will be symmetrical with respect to the 

ordinate axis (Fig. 2.19) 

 
Fig. 2.19. The attenuation characteristic of the low-pass filter is symmetrical with 

respect to the ordinate axis 

 

The left part of this graph corresponds to the relative placement of the 

stopband and the passband for the high-pass filters (Fig. 2.19). 
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Fig. 2.20. Characteristics of attenuation of the high-pass filter 

 

Letʼs choose such a function that would turn the negative semi-axis   (Fig. 

2.18) into a positive one (Fig. 2.19). At the same time, the point “  ” (Fig. 2.18) 

should correspond to the point “0” (Fig. 2.19), “-1”-“ω0”, “0”-“∞”. It is clear that 

such a function will be 

0/                                                    (2.26) 

Thus, all expressions obtained earlier for low-pass filters are also correct for 

high-pass filters, if in these expressions   is determined from relation (2.26). 

Normalization by frequency allows you to fully use all methods, formulas, 

nomograms and data tables obtained for low-pass filters when calculating high-

pass filters with Butterworth, Chebyshev, Zolotaryov characteristics or with 

arbitrary placement of attenuation bursts. For example, in fig. 2.21 shows the 

schemes and characteristics of some high-pass filters with equal-wave attenuation 

characteristics. 
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Fig. 2.21. Attenuation characteristics of high-pass filters with equal-wave attenuation 

characteristics 

 

Bandpass filters and other types of induction filters 

A bandpass filter can be formed from a low-pass filter, if in the latter each 

inductance is replaced by a series oscillating circuit without losses, and each 

capacitance is replaced by a parallel one, while the resonant frequencies of all 

circuits are taken to be the same (Fig. 2.22) 

 
Fig. 2.22. LPF to BF conversion 

Then, before the resonance frequency, the nature of the resistance of the 

branches of the resulting filter will be the same as that of the high-pass filter, and 

after the resonance frequency, it will be the same as that of the low-pass filter. In 

general, the filter will be a bandpass filter, while the resonant frequency of the 

circuits will be in the passband of the filter. 

Letʼs select a function that would transform the frequency axis  ;    

(рис. 2.19) into the semi-axis  0   (рис. 2.23). 
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Fig. 2.23. Characteristics of BF attenuation 

 

Thus: 

The point « »  (Fig. 2.19) should be the point «0»  (Fig. 2.23). 

The point « 1»  (Fig. 2.19) should be the point 1« »  (Fig. 2.23). 

The point «0»  (Fig. 2.19) should be the point 0« »  (Fig. 2.23). 

The point «1»  (Fig. 2.19) should be the point 1« »  (Fig. 2.23). 

The point « »  (Fig. 2.19) should be the point « »  (Fig. 2.23). 

Such a transformation can be performed by a function 

0 0

1 1 0

 

   

 
   

  
 (2.27) 

Thus, all the expressions obtained earlier for low-pass filters remain valid 

for the considered bandpass filters, if in these expressions   is determined from 

relation (2.27). 

It is important to note that the frequency characteristics of the filters under 

consideration have one peculiarity, which is due to the fact that the function (2.27) 

takes values equal in absolute value and opposite in sign for any pair of 

frequencies a  and b , which are related by the relation 2

0a b     that is, for any 

pair of frequencies placed symmetrically with respect to the frequency 0 , which 

in turn is the geometric mean frequency of the filter passband. Accordingly, the 

attenuation of the filter at frequencies a  and b  will be the same, that is, the 

attenuation characteristic of any bandpass filter obtained by frequency 

transformation (27) will always be geometrically symmetric with respect to the 

frequency 0 . The graphic illustration is shown in fig. 2.24. That is why such 

filters were called filters with symmetrical (geometric) attenuation characteristics. 

The practical use of the filters described earlier is limited only to those cases 

where the requirements for the attenuation characteristics of the filter on both 

sides of its passband are close to symmetrical. Otherwise, in some frequency 

0 

Арmax 

ωа ω0 
ω-1 ω1 ωb 

Ар 
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areas, there will be an unreasonably large margin of attenuation, which indicates 

the existence of a more economical solution in terms of the number of elements. 

Accordingly, in the general case, a bandpass filter can have any number of bursts 

to the left and right of its passband, different steepness of the attenuation 

characteristic at 0   and at  , which differ in the width of the transition 

band, that is, an attenuation characteristic that is significantly differs from 

symmetrical. 

In addition to such low-pass filters, high-pass filters, bandpass filters, and 

rejection filters are also often used in technology.  

The attenuation characteristic of the rejection filter is shown in Fig. 2.24. 

 
Fig. 2.24. Attenuation characteristics of the bandpass filter 

 

If you compare this characteristic with the characteristic of a bandpass filter, 

you can see that the rejection filter has an attenuation characteristic opposite to 

that of a bandpass filter, so it can also be obtained from a low-pass filter prototype, 

but in this case, in the low-pass filter, each capacitor needs to be replaced by a 

series oscillating circuit , and the inductance on is parallel (Fig. 2.25), while the 

resonant frequency of all circuits must be the same, then such a filter will freely 

pass (with little attenuation) all frequencies below and above the resonant 

frequency of the circuits, and at frequencies close to resonance, the attenuation of 

the filter will be large because the series circuits will have a shunting effect on the 

input signal and the parallel circuit will have a higher resistance to it. 

In radar technology, comb filters are widely used, in which passbands 

alternate with stopbands. There are many ways to obtain a comb-like attenuation 

characteristic. The simplest of them is the method of creating such a characteristic 

using a set of bandpass or rejection filters. 

Ар 

0 f0 f 
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Fig. 2.25. Transition to the rejection filter 

 

In fig. 2.26 shows the method of obtaining a comb filter and its attenuation 

characteristics.  

 
Fig. 2.26. Comb filter 

 

We will consider the influence of load resistance on filter characteristics 

using the example of the simplest low-pass filter. 

When the filter is loaded to the resistance H OZ Z , i.e. to the characteristic, 

this mode is called the matching mode (Fig. 2.27). 

LPF RF 

BF f01 

 

BF f02 BF f03 BF f0n 

Ар 

0 
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Fig. 2.27. Load of the filter on the characteristic resistance 

 

In this case, the attenuation characteristic of the filter will have the form 

shown in Fig. 2.28. 

 
Fig. 2.28. Filter attenuation characteristic 

 

It should be emphasized that a filter of this type will have a characteristic 

only if it is loaded with a resistance equal to the characteristic one. To find out 

whether the existence of such a regime is possible, it is necessary to find the 

characteristic resistance of the filter under consideration. 

Using the theory of quadripoles, it is possible to write a formula for the U-

shaped filter circuit that expresses the dependence of the characteristic resistance 

on the frequency 2/ 1o Ωz   where 
L

C
  is the wave resistance. The graph 

of such dependence is shown in fig. 2.29. 

As can be seen from fig. 2.29, the impedance 0Z  is very frequency dependent 

both in character and magnitude. This is typical of any filter scheme. Accordingly, 

in order to match the load, it would be necessary to select its own load resistance 

for each frequency (active in the passband, reactive in the delay stopband). 

However, under actual operating conditions, the load resistance is usually a 

practically frequency-independent active resistance нR . It follows from this that, 

in general, the filter operates on an unbalanced load and the matching mode can 

only be approached. Using the same theory of quadripoles, it is possible to 

determine the dependence of the filter attenuation on the load resistance. 

С С ZH = ZO 

L 

1 0 Ω Ωз 

Ар max 

Ар 

Ар min 
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The graph of such dependence for LPF is shown in Fig. 2.30. 

 
Fig. 2.30. Dependence of low-pass filter attenuation on load resistance 

 

As can be seen from the graph, when the filter is idling ( нR   ) in the 

passband, the attenuation becomes negative, i.e. the transmission coefficient of 

the filter is greater than 1. It is clear that this does not mean signal amplification 

in terms of power, because the filter is a passive EC. The reason for this is the 

resonance in the series circuit 
2

LC
, in which the output voltage of the filter can be 

several times greater than the input voltage. 

It can also be seen from the graph that at low RH values, the attenuation in 

the passband increases significantly and decreases in the stopband. Thus, it will 

be appropriate to choose such a mode when 0нR Z . 

  

Ар 

0 1 

RH < Z0 
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RH = Z0 
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2.6. NON-INDUCTIVE FILTERS 

 

Recently, in connection with the problem of microminiaturization of ECs 

and the construction of linear microelectronic ECs, first of all, design methods are 

intensively developed and the technology of manufacturing circuits that do not 

have inductance, i.e., so-called non-inductive ECs, is being improved. The fact is 

that the possibilities of reducing the weight and size of inductors, which have a 

fairly high quality factor, are practically exhausted today. 

Non-inductive filters include piezoelectric, magnetostrictive, 

electromechanical filters, RC-filters, and others. 

2.6.1. Piezoelectric filters 

A piezoelectric resonator is an electromechanical oscillating system 

consisting of a piezoelectric element and conductive electrodes. 

The peculiarity of such an oscillating system is its ability to transform 

electrical energy into the energy of mechanical vibrations and vice versa. 

The operation of the piezoelectric resonator is based on the phenomenon of 

the piezo effect, which manifests itself in the fact that when bodies made of certain 

crystals are deformed, an electric voltage is formed between their individual 

surfaces, the polarity of which changes with the change in the sign of the 

deformation. If an alternating voltage is applied to opposite faces of a 

piezoelectric plate, the plate will perform mechanical oscillations with a 

frequency equal to the frequency of the applied voltage. This phenomenon is 

called the opposite piezo effect. Crystals of quartz, ferruginous salt, tourmaline, 

barium titanium, etc. have a piezo effect. 

In the simplest case, a piezoelectric resonator is a plate that has the shape of 

a parallelepiped and is cut in a certain way relative to the crystallographic axes 

from a piezoelectric crystal. On two opposite sides of this plate, metal electrodes 

with current-conducting terminals are applied in one way or another. 

Piezoelectric resonators made of quartz crystals have received the greatest 

use and distribution in communication technology. Such piezo resonators are 

called quartz. The high stability of characteristics and high quality factor of quartz 

resonators led to their wide use in communication technology and, in particular, 

in military radio-receiving and radio-transmitting equipment; firstly, to stabilize 

the frequency of the generators of radio stations and, secondly, to create quartz 

filters. 

As a piezoelectric current occurs in the quartz plate, the plate behaves like 

an electrical circuit. Letʼs clarify the nature of this chain. 

A quartz plate is an elastic body, so it has a resonant frequency of mechanical 

oscillations  0f . If the frequency of the applied voltage is uf , then the 

piezoelectric current is maximal in magnitude, and the plate resistance is purely 

active. When 0uf f , the current leads the voltage in phase, that is, the plate 

behaves like an RC-circuit. When 0uf f , the current lags in phase with the 
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voltage, that is, the plate behaves like an RL-circuit. When 
0uf f , the amplitude 

of the piezoelectric current and mechanical oscillations is smaller, the greater the 

difference between 
uf  and 

0f . That is, the piezoelectric element has the properties 

of a continuous oscillating circuit. The complete piezo-electric resonator 

replacement scheme (except for , ,q q qL C R ) contains the capacity of the crystal 

holder 
0C . In fig. 2.31 shows the diagram of resonator replacement (a) and the 

graph of the frequency dependence of its resistance (b). 

The most stable parameter of a piezo resonator is its resonance frequency q

. In quartz resonators, the quality factor value of the successive oscillating circuit 

in the substitution scheme reaches 106 and higher. Therefore, when calculating 

circuits with quartz resonators, you can consider a quartz resonator as a purely 

reactive bipolar device. 

 
Fig. 2.31. Resonator replacement scheme 

 

A narrowband step filter can be obtained by connecting several simple links 

(Fig. 2.32). 

 
Fig. 2.32. The simplest filter links 
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If quartz filters of step schemes are formed by including quartz resonators in 

longitudinal and transverse branches, it is possible to obtain bursts of attenuation 

in the upper and lower stopbands. 

Quartz resonators, due to their high quality factor and stability of electrical 

parameters, are widely used in the construction of bandpass filters with a small 

relative passband and high requirements for the amount of guaranteed attenuation 

and the width of the transition band. The implementation of such requirements by 

LC-filters turns out to be impossible, as a rule, even with the use of inductors with 

the maximum achievable quality factor. 

In addition to quartz resonators, quartz filters have one or another number of 

capacitors and possibly transformers. 

Sometimes, in order to increase the width of the transmission band, one or 

two inductance coils, which are called expansion coils, are introduced into the 

composition of quartz filters. These coils are connected to each of the filter 

branches, most often in parallel with quartz resonators. 

Within the passband of the filter, its operating attenuation characteristic can 

be maximally flat, equal-wave or close to equal-wave, which is determined by 

both the calculation method and the precision of manufacturing quartz resonators. 

Depending on the passband of the filter, its attenuation characteristic can grow 

monotonically or have a certain number of attenuation bursts. 

Depending on the requirements placed on the quartz filter, in particular on 

the relative width of its bandwidth, one or another typical structures are used: 

bridge without expansion coils, bridge with expansion coils, stepped or 

monolithic quartz filters. Most quartz filters used in communication equipment 

have a bridge structure. 

The diagram of the four-pole bridge is shown in Fig. 2.33, a. In order to save 

resonators, quadrupoles with a differential transformer are widely used in 

practice, that is, differential-bridge quadrupoles, which are equivalent to bridge 

ones (Fig. 2.33, b). 

Branches of a bridge (differential-bridge) quartz filter without expanding 

inductance coils are formed as a result of the parallel connection of one or another 

number of quartz resonators, the more complex the requirements for the 

attenuation characteristics of the filter. 
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Fig. 2.33. Scheme of a bridge quadrupole 

 

In fig. 2.34 shows a diagram of a differential bridge filter, which contains 

two quartz resonators in one branch, and one resonator and one capacitor in the 

other. 

 
Fig. 2.34. Differential bridge filter scheme 

 

In the considered schemes of differential-bridge quartz filters, the 

transformation coefficient of the differential transformer in relation to its half-

winding was taken as unity. Of course, it can be chosen different from unity, 

which allows you to change the internal resistance of the generator within wide 

limits depending on the resistance value or filter load. 

Recently, considerable attention has been paid to the development of 

methods for calculating and designing monolithic quartz filters. A monolithic 

quartz filter is a set of several frequency monolithic resonators made on the same 

basis (quartz substrate). Due to their close location, they form a single 

electromechanical oscillating system (Fig. 2.35). 
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Fig. 2.35. Monolithic quartz filter 

 

Quartz filters are widely used in the equipment of the Ministry of 

Communications. The use of quartz filters of new types, which were called 

monolithic, is one of the real ways of microminiaturization of selective circuits of 

analog radio electronics. 

 

2.6.2. Electromechanical and magnetostrictive filters 

 

Electromechanical filters, which use mechanical resonators made of steel or 

other alloys as resonators, are highly selective devices that allow a passband of 

several tens of hertz in the frequency range of several hundred kilohertz. They can 

be made in the form of a compact structure using different types of vibrations: 

longitudinal, transverse, torsional, bending vibrations, etc. 

Modern electric filters usually contain a large number of resonators, which 

are connected to each other in a chain using special connections. Such filters are 

called electromechanical chain filters. 

Electromechanical filters contain three components: 

1) input electromechanical converter, which converts electrical 

oscillations into mechanical oscillations of one or another type; 

2) a multi-resonator mechanical oscillating system, that is, a 

mechanical filter, which consists of mechanical resonators and 

connections; 

3) an output electromechanical converter that converts filtered 

mechanical vibrations of a certain frequency band into electrical 

vibrations. 

The structural scheme of the electromechanical filter is shown in fig. 2.36. 

 
 

Resonators-transducers 
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Fig. 2.36. Structural scheme of an electromechanical filter 

 

inEC , 
outEC  are input and output electromechanical converters; 

MR are mechanical resonators; 

C are connections. 

Mechanical oscillations that occur in the input converter are transmitted to 

the mechanical oscillatory system consisting of a number of links. These 

oscillations are filtered by a multi-resonator oscillation system. At the output of 

the mechanical oscillating system, which ensures the allocation of a certain 

frequency band, the oscillations are perceived by the output converter, which 

converts mechanical oscillations into electrical ones. 

When calculating electromechanical filters, a technique based on the 

calculation of equivalent LC-filters is widely used. 

With the help of chain electromechanical filters, it is possible to obtain 

bandpass filters with a small width of the transition band. 

The principle of operation of the magnetostrictive filter consists in the 

transformation of electrical vibrations into mechanical ones, filtering of 

mechanical vibrations and their reverse transformation into electrical ones. The 

conversion of oscillations is carried out by ECIN and ECOUT elements, the 

operation of which is based on the magnetostriction effect. A direct effect of 

magnetostriction is that if a ferromagnetic rod is placed in an alternating magnetic 

field, its length will change periodically. If you mechanically act on this rod, its 

magnetic permeability will change, that is, the reverse effect of magnetostriction 

will appear. 

An electromechanical converter consists of an inductor, inside which is a 

nickel core, and permanent magnets that create the magnetization of the core. 

Under the action of the external magnetic field created by the input current, the 

length of the core periodically changes, that is, mechanical oscillations occur in 

it. These vibrations are transmitted to mechanical resonators, which are a chain of 

metal plates, discs or balls connected to each other by nickel rods-links. 

Each resonator is equivalent to an oscillating circuit, and the coupling is the 

coupling capacitance between the circuits. The last resonator excites oscillations 

in the core of the coil of the output electromechanical converter. At the same time, 

due to the reverse effect of magnetostriction, the EMF of the output signal is 

induced in the coil winding. 

The bandwidth of a magnetostrictive filter is usually several kilohertz. 

The advantages of magnetostrictive filters: 

– high stability of characteristics; 

– resistance to impact loads. 

Disadvantages: 

– complexity of manufacturing and regulation; 

– relatively high cost; 

– limitation of the frequency range to several units of megahertz. 
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2.6.3. Active RC-filters 

 

inductive filters, which are discussed above, should be used at frequencies 

higher than several tens of kilohertz, at lower frequencies the inductance of the 

coils should be greater, that leads to a significant increase in weight and size 

indicators and cost. 

In this regard, non-inductive RC and ARC filters have become widespread 

in radio engineering equipment. The low-pass RC-filter consists of elements 
1R  

and 
1C  (Fig. 2.37) 

 
 

Fig. 2.37. RC-filter of lower frequencies 

 

Since the resistor R1 is in the longitudinal branch, such a filter passes direct 

current and low-frequency oscillations. As the frequency increases, the resistance 

of the capacitor decreases and it shunts the output signal, that is, the attenuation 

will increase with increasing frequency. The attenuation characteristic of such a 

filter is shown in Fig. 2.38. 

 
Fig. 2.38. Attenuation characteristics of the RC-filter of low frequencies 

 

The RC-filter of upper frequencies contains a capacitor in the longitudinal 

branch, and a resistor in the transverse branch. Its scheme and characteristics are 

shown in fig. 2.39. 
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Fig. 2.39. Characteristics of attenuation of the RC-filter of upper 

frequencies 

 

A band-pass RC filter can be obtained by connecting in series the links of 

the low-pass RC filter and the high-pass RC filter. With the appropriate selection 

of parameters R  and C , a bandpass filter can be obtained. Its scheme and 

attenuation characteristics are shown in fig. 2.40. 

 
Fig. 2.40. Attenuation characteristics of the bandpass filter 

 

In a similar way, it is possible to obtain a rejection RC filter (Fig. 2.41). 
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Fig. 2.41. Attenuation characteristic of the rejection filter 

 

The disadvantage of RC filters is a rather large attenuation in the 

transmission band, which is explained by the presence of active resistances. 

Therefore, RC filters are often used in combination with signal amplifiers. A 

device consisting of a passive RC filter and a signal amplifier is called an active 

RC filter (ARC filter). We will consider the principle of operation of the ARC 

filter using the example of the high-frequency filter. It consists of a signal 

amplifier, in the negative feedback circuit (NFC) of which a LF RC filter is 

included (Fig. 2.42). 

In the presence of a NFC circuit, the gain of the amplifier decreases the more 

the feedback voltage transmitted from the output of the amplifier to its input 

through the low-pass RC filter. Since the voltage at the output of the filter is 

maximum at lower frequencies and decreases with increasing frequency, we get 

that the gain of the amplifier changes according to the inverse law, that is, it will 

be maximum at upper frequencies and minimum at lower ones. 

In this way, we will obtain the HPF. The main feature of ARC filters is 

amplification of oscillations in the passband. Thanks to this, it is possible to 

include a multi-link RC filter in the NFC circuit of the ARC-filter and form a 

given shape of the AFC of the active filter. 

 
Fig. 2.42. Structural scheme of an active RC filter 

 

Letʼs consider in more detail the implementation of an ARC-filter based on 

an operational amplifier. 
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L 

Letʼs say we have an L-shaped link of the LPF (Fig. 2.43). 

 

  
Fig. 2.43. L-shaped link of the LPF 

 

Letʼs define the transfer function  
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Analyzing the transfer function, we see that it has the second order, as a 

result, the link is called a link of the 2nd order.  

Consider the implementation of the 2nd-order link of the low-pass filter in 

the form of an active RC filter on the operational amplifier. First, consider the 

transmission characteristic of an operational amplifier with two-loop feedback 

(Fig. 2.44). 

R 
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Fig. 2.44. Implementation of the 2nd-order link of the low-pass filter in the 

form of an active RC-filter on the operational amplifier 
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Letʼs select the conductances 1 5Y Y , which would provide the typical transfer 

function of the 2nd-order low-pass filter obtained earlier. Turning to the transfer 

function of the low-pass filter, we see that for its implementation it is necessary 

that the elements 1Y , 3Y  and 4Y  are resistors, and the elements 2Y  and 5Y  are 

capacitors. In this case, the transfer function will have the form 
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and the scheme of the low-frequency RC-filter of the 2nd order can be 

presented in the form of fig. 2.45. 

Fig. 2.45. Scheme of a low-frequency RC filter of the 2nd order 

 

The scheme of a second-order high-frequency active RC filter can be 

obtained from the second-order low-pass filter circuit by rearranging capacitors 

and resistors (Fig. 2.46). 

Thus, we considered one of the possible principles of construction of active 

RC-filters, which is based on the use of operational amplifiers covered by 

feedback circuits. 

 
Fig. 2.46. Scheme of a high-frequency RC filter of the 2nd order 

 

Consider the implementation of the ARC filter based on simulated 

inductances. 

When constructing active RC-filters with simulated inductances, the 

inductive elements in conventional LC-filters are replaced with simulated ones. 

Gyrators are used to simulate inductances. A gyrator is a three-pole device whose 

input and output currents and voltages are related by the following ratios: 
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Conventional graphic designation of the gyrator is shown in fig. 2.47. 

 
Fig. 2.47. Conventional graphic designation of the gyrator 

 

Consider using a gyrator to simulate an inductance. Suppose that a capacitor 

with a capacity of C is turned on at the output of the gyrator (Fig. 2.48). 

 

 
 

Fig. 2.48. Turning on the gyrator to simulate inductance 

 

Letʼs determine the input resistance of the scheme (Fig. 2.48). Based on the 

transmission equations in G-parameters, we can write for the gyrator  

 1 2 2 1 2 2 1;  ;  İ GŮ İ GŮ İ j C Ů GŮ       , 

2 1.  /i e Ů GŮ j C , and accordingly 
2 2

1 1 1 2 1 1/ / / /INZ Ů İ Ů GŮ j CŮ G Ů j C G     . 

Thus, the gyrator allows you to simulate inductance with the help of a 

capacitor. 

To solve the problem of constructing a gyrator, let's display its conductance 

matrix as the sum of two matrices 

1 1

2 2

0 0 0 0

0 0 0 0

G G

G G

      
      

    
 

The first of these matrices corresponds to a non-inverting current amplifier, 

and the second to an inverting one connected in the reverse direction. As is known, 

the sum of the conductance matrices corresponds to the parallel connection of 

these amplifiers, that is, the functional scheme of the gyrator is shown in fig. 2.49. 
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Fig. 2.49. Functional scheme of the gyrator 

 

The schematic scheme of the gyrator is shown in fig. 2.50. 

 
Fig. 2.50. Schematic scheme of the gyrator 

 

In this scheme, the non-inverting current amplifier is made on transistor V1, 

and the inverting one is made on transistors V2 and V3. 

 

2.7. DIGITAL FILTERS 

 

2.7.1. The general understanding of the principle of digital signal 

processing 

A general understanding of the principle of digital processing of a continuous 

signal can be obtained from the scheme shown in fig. 2.51. 

 
Fig. 2.51. Structural scheme of digital processing of a continuous signal 
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The input signal 
 t

S  is first discretized in time using an electronic key (EK) 

operating with a step T . The signal 
 t

S  at the output of the EK has the form of a 

sequence of equal short pulses, which are counts of the signal 
 t

S . 

Each count is stored in the integrating RC circuit for the time required to 

trigger the analog-to-digital converter (ADC). This time should not exceed the 

discretization step T . 

In an ADC, each count is quantized by level and converted into a binary 

number, which is composed of n-digits, each of which is represented by a “0” or 

a “1”. Quantization consists in the fact that the count is measured and assigned 

one level out of the total number of possible ones. This number is equal to 2n . For 

example, with 10n  , we get 2 1024n   levels. 

Thus, a digital count takes place at the output of the ADC in the form of a 

binary n-bit number. 

The sequence of digital readings is fed to a digital filter (DF). 

The DF is a computing device in which certain mathematical operations 

(addition, multiplication, as well as time delay) corresponding to a given 

algorithm are performed on digital readings. As a result of these operations, new 

digital readings corresponding to the filtered signal appear at the output of the DF. 

Counts are reproduced in analog form in the digital-to-analog converter. 

In a quadrupole, which can be called a synthesizing filter (SF), readings of 

an analog form are converted into a continuous output signal. 

It should be noted that when considering the principle of operation of the 

digital signal processing scheme, analog-to-digital and digital-to-analog 

conversion is not of decisive importance. That is why in the future it is possible 

to proceed from the assumption that non-quantized counts are introduced in the 

DF, that is, we will consider the principles of operation of discrete systems. 

 

2.7.2. Models of discrete signals 

 

Discrete signals are determined at discrete moments of time and are 

represented by sequences of numbers. 

The sequence of numbers x, in which the nth member of the sequence is 

defined as  x n , can be written in the form 

  x x n ,      . 

For convenience, x(n) will be called the nth sample (count) of the sequence. 

Discrete signals are often represented graphically (fig. 2.52) 
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Fig. 2.52. Graphical representation of a discrete signal 

 

In discrete signal processing, typical sequences play an important role (for 

analog systems, typical actions are delta function, single-step function): 

a) unit pulse (Fig. 2.53) 
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; 

 
Fig. 2.53. A graphical representation of a discrete unit pulse 

 

b) single step sequence (Fig. 2.54) 
1 0

0 0

n
U(n)=

n

 
 

 
. 

 
Fig. 2.54. A graphical representation of a discrete unit step sequence 

 

A single step sequence is related to a single pulse ratio 
n

k=

U(n)= δ(k)


 . 

Accordingly, a unit impulse is related to a unit step sequence by the formula 

1δ(n)=U(n) U(n )  . 

The sequence x(n) is called periodic with period N if 

x(n)= x(n+N)  for all n. 

The product and sum of two sequences x and y are defined as the product 

and sum of samples, respectively: 

 

 

xy = x(n)y(n) ;

x+ y = x(n)+ y(n)
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The multiplication of sequences x by the number a is defined as  xa= ax(n)

. 

A sequence of y is a delayed or shifted sequence of x if y has a value 

0y(n)= x(n n ) , where n0 is an integer. 

Any sequence can be represented as a sum of weighted and delayed unit 

pulses 

3 1 2 73 1 2 7P(n)= a δ(n+ )+a δ(n )+a δ(n )+a δ(n )    . 

 
Fig. 2.55. Representation of a discrete sequence 

 

Thus, for the general case, an arbitrary sequence x(n) can be written in the 

form 

k=

x(n)= X(k)δ(n k)




 . 

 

2.7.3. The concept of the impulse characteristic of a discrete circuit  

 

In order to extract information, signals must be processed. The technique of 

signal processing is to transform a signal into another signal that is more 

appropriate. 

Signal processing systems can be classified like the signals themselves. 

Yes, discrete systems are systems in which there are discrete signals (number 

sequences) at the input and at the output. 

A discrete processing system is defined mathematically as a single-valued 

transformation or operator T, which transforms the input sequence x(n) into the 

output sequence y(n), which is mathematically written in the form 

y(n)=T[X(n)] , 

and it is graphically depicted as shown in Fig. 2.56. 

 
Fig. 2.56. Discrete processing system 

 

The classes of discrete systems are determined by imposing restrictions on 

the transformation T[ ]. 
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Therefore, in the future, we will consider only the class of linear systems 

invariant with respect to displacement, because they are relatively simple in 

mathematical terms. 

The class of linear discrete systems is determined by the principle of 

superposition, which is as follows: if  1y n  and  2y n  are responses (output 

sequences) to input sequences x1(n) and x2(n), then the discrete system is linear if 

and only if when 

           1 2 1 2 1 2T ax n bx n aT x n bT x n ay n by n               , 

where a and b are arbitrary constants. 

The class of shift-invariant discrete systems is characterized by the following 

property: if  y n  is the response (output sequence) to the input sequence  x n , 

then for the shift-invariant discrete system for the output sequence shifted by k  

counts  y n k  will correspond to the input a sequence also shifted by k , i.e. 

 x n k , where k  is a positive or negative integer. 

Based on the introduced notions of linear and shift-invariant discrete 

systems, it is possible, as for analog linear electric circuits, to introduce the 

concept of the impulse characteristic of a discrete linear shift-invariant system, as 

well as the analytical expression of a discrete convolution, which allows, based 

on the known impulse characteristic of a discrete-invariant system, to 

displacement of the linear system to determine the response in the form of the 

initial numerical sequence. 

Earlier we showed that an arbitrary sequence x(n) can be represented as a 

delayed and weighted sum of unit impulses 

     
k

x n x k n k




  . 

It was determined above that the discrete processing system performs an 

unambiguous transformation of the input sequence x(n) into the output sequence 

 y n . That is, 

     
k

y n T x k n k




 
  

 
 . 

Using the principle of linearity (that is, we assume that a linear discrete 

system exists), we will have 

     
k

y n x k T n k




    . 

The second term of the right-hand side of the given expression  T n k     

is the response of a discrete linear system to a unit impulse  n k  , i.e. 

   kT n k h n    
*, 

where  n k   is the unit impulse shifted by k . 

But for the invariant shift of the system, we can write 
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   T n k h n k      . 

The shifted numerical sequence (response)  h n k  is a response to a single 

pulse  n k   and is called the impulse response of a linear invariant shift by a 

discrete system (for analog linear electrical circuits, the response of a linear 

electrical circuit to the delta function  t  is called the impulse response  g t ). 

Thus, the expression * is transformed taking into account the introduced 

notion of impulse characteristic into the form 

k=

y(n)= x(k)h(n k)




 **. 

and is called a discrete convolution, which allows, based on the known 

impulse characteristic of the linear invariant shift of a discrete system, to 

determine the response (output numerical sequence) of the system to the action of 

the input numerical sequence x(n) on it. For analog linear electrical circuits, the 

response to arbitrary action of impulses is calculated using the Duhamel integral 

     
0

t

out inU t g t T U d   . 

If we replace the variable ** in the expression, we get another expression for 

discrete convolution 

     
k

y n x n k h k




  . 

For analog systems 

     
0

out inU t U t g d  


  . 

For two discrete systems, cascading and parallel switching can take place. 

Two linear invariant shift systems connected in cascade form a linear invariant 

shift system with an impulse response equal to the convolution of the impulse 

responses of the original systems. 

Two linear invariant shift systems, switched on in parallel, form a linear 

invariant shift system with an impulse response equal to the sum of the impulse 

responses of the output systems. 
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Fig. 2.57. Cascading and parallel inclusion of discrete processing systems 

 

2.7.4. Algorithms of digital filtering in the time domain 

 

Elements of the digital filter 

A linear discrete system can be defined by a composition of such three 

elements. 

 
Fig. 2.58. Adder of sequences 

 
Fig. 2.59. Multiplier by constant coefficient a 

 
Fig. 2.60. Delay element (T-step discretization) 

 

The difference equation 

As a rule, during digital signal processing, there are periodic sequences of 

 x n  and  h n  with periods of n counts. In this case, the concept of a circular 

discrete convolution is introduced, which is represented by relations 
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1

0

n

k

y n x n k h n k




   , or 

     
1

0

n

k

y n x n k h k




  . 

The sequence  y n  will also be periodic with a period of n counts, so it is 

enough to calculate it on one period. 

In the expression of the circular discrete convolution, the discrete impulse 

response  h k  can be interpreted as the result of discretization with a step T  of 

the continuous impulse response of the corresponding analog filter. 

 
Fig. 2.61. Discrete impulse characteristic h(k) 

 

That is, the discrete impulse response is represented by a numerical sequence 

 a k . 

In this way, the circular discrete convolution can be presented in the form 

     
1
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n

k

y n a k x n k




  . 

From the point of view of mathematics, the given expression of circular 

discrete convolution is a difference equation. 

In the general case, a shear-invariant linear discrete system can be described 

by a difference equation of the general form 

         
1 1

0 1

n m

k k

y n a k x n k b k y n k
 

 

     . 

The second term of this equation is characterized by the presence of inverse 

relations. In the presence of inverse connections, the value of the output numerical 

sequence (output signal) depends not only on n  readings of the input sequence 

 x n , but also on a certain number of m  readings of the output sequence at 

previous moments. 

 

2.7.5. Z-transformation of frequency characteristics of digital filtering 

 

For a discrete sequence  x n , one can introduce the concept of the discrete 

Laplace transform in relation to the expression 
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Here, as in the case of the continuous Laplace transform, the complex 

variable p is equal to j . 

During the analysis and synthesis of discrete signal processing systems, the 

Z -transformation, which is related to the discrete Laplace transform and derives 

from it, has received considerable spread. 

The direct Z -transformation  X Z  of the sequence  X N  is given by the 

formula 

   
0

n

n

X Z x n z






  , 

where pTz e . 

The Z -transform practically coincides with the discrete Laplace transform 

and differs only in the image argument. With such a replacement, the 

transcendental functions from the argument p  will turn into rational functions 

from the argument z . Thanks to this, the analysis is shortened. 

Let us consider the Z -image of some discrete signals. 

So: 

a) unit impulse  n  

    1[ ]X z Z n  ; 

b) single step sequence  U n  

    1

1
 

1
 [ ]

2
U n =X z Z





; 

c) exponential sequence   nx n a  

    12
 

1
 

1
X z Z x n

a 
  


. 

The inverse Z -transform is given by the formula 

     1 11

2

n

c

x n Z X z X z Z dz
j

      . 

The Z -transform is characterized by the following properties: 

1) linearity if      1 1 2 2X n a x n a x n  , then 1 1 2X(Z)= a x (z)+a x(z) ; 

2) offset if  X n m , then     mZ x n m Z x z    ; 

3) Z -transform convolution. If      
0k

Y n x k h n k




  , then      Y z x z y z  ; 

A digital device that operates on the basis of a general difference equation  

         
1 1

0 1

n m

k k

Y n a k x n k b k y n k
 

 

      

is called a digital filter. 

An important characteristic of a digital filter is the transfer function  H z , 

which represents the ratio of the Z -images of the output  y z  and the input 

sequence  x z  of the filter under zero initial conditions  
 

 

y z
H z

x z
 . 
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Performing the Z -transformation on the left and right sides of the difference 

equation of the general form, we obtain the transfer function of the digital filter 
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For the difference equation with   0b k  , we have 
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n
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  . 

Then  
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n
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  . 

Using the transfer functions, it is possible to obtain the frequency 

characteristics of the DF. For this, a substitution is made j TZ e  . The modulus of 

the complex transfer function is called AFC, and the argument is PFC. 

 

2.7.6. Schematic implementations of digital filtering in the time domain 

 

In analog filters, depending on the way the filter is assigned (impulse 

characteristic or transfer function), two approaches are possible: in the time 

domain or in the frequency domain. 

Letʼs consider a time approach. 

The time approach is based on the calculation of the difference equations 

(discrete convolution), which were given earlier      
1

0

n

k

y n a k x n k




   and 

         
1 1

0 1

n m

k k

y n a k x n k b k y n k
 

 

     . 

The filter operating on the basis of the first equation is called a non-recursive 

filter and has a finite duration of the impulse response. Such filters are also called 

finite impulse response filters (FIR filters). 

The filter, which functions on the basis of the 2nd equation, is called a 

recursive filter, it is characterized by an infinite impulse response and can be 

called a FIR filter. 

Non-recursive filters can be implemented in various forms. The direct form 

corresponds to the realization of a filter according to the first difference equation.  
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Fig. 2.62. Structural scheme of the FIR filter 

 
Fig. 2.63. The equivalent form of the structural scheme of the FIR filter 

 

There are also several different forms of recursive filter implementation. 

The direct form of realization corresponds to the direct use of the second 

equation. 

 
 

Fig. 2.64. Direct structural scheme of the IIR filter 
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 – is the transfer function of the recursive filter, and  
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   – is the transfer function of the non-recursive filter. 

Difference equations correspond to such transfer functions 
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1
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  . 

These equations can be implemented according to such a scheme (Fig. 2.65). 

 
Fig. 2.65. Canonical structural scheme of the IIR filter 

 

The part of the circuit located to the left of the delay elements corresponds 

to the first difference equation. The implementation of the 2nd equation is based 

on the fact that the counts  u n ,  1u n  , etc. of the auxiliary signal are already 

received and stored at the outputs of the delay elements. Therefore, additional 

delay elements are not required to implement the second equation. This made it 

possible to reduce the number of delay elements by half compared to the direct 

form of implementation. 

As a rule, the implementation of high-order digital DFs in a direct or 

canonical form is impractical due to calculation errors due to the finite bit rate. In 

this case, it is better to implement filters using a second-order link 
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At the same time, serial or parallel forms of implementation can be used. 

For the serial form, the transfer function of the DF is written in the form 

   
1

L

i

L

H z H z


  . 

Accordingly, the structural scheme is shown as in Fig. 2.66. 

 
Fig. 2.66. Structural scheme of sequential implementation of DF 

 

For the parallel form, the transfer function of the DF is written in the form 

   
1

L

i

i

H z H z


   at   0b z  . 

Accordingly, the structural scheme looks like in Fig. 2.67. 

  
Fig. 2.67. Structural diagram of parallel implementation of DF 

 

2.7.7. Algorithm and scheme of digital filtering in the frequency domain 

 

2.7.7.1. Algorithm of digital filtering in the frequency domain 

As is known, with the spectral method of analysis, the transfer function 

 T j  allows you to determine the spectral density of the output signal based on 

the known spectral density of the input signal 

     2 1 j j T j     . 

Knowing the complex spectral density of the output signal, using the inverse 

Fourier transform, it is possible to determine the output signal 

   2

0

1 j t

outU f Ф j e d 




  . 

This spectral analysis algorithm is used for continuous (analog) signals. 

The algorithm is digital, similar to the one discussed above, except that 

instead of the spectral densities and the complex transfer function, there are their 

spectral readings, which are determined by time readings based on the discrete 

Fourier transform 

x(n) 
H1(Z) H2(Z) HL(Z) 

y(n) 

+ HZ(Z) 

H1(Z) 

HL(Z) 

x(n) y(n) 
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  , 

where  x k  are the time counts of the input signal. 

As for the spectral readings of the transfer function, they are also determined 

on the basis of the discrete Fourier transform from the time readings of the 

impulse response  n k  

 

2
1

0

j nkN N

n

k

H n k e






  . 

Thus, the digital filtering algorithm in the frequency domain contains four 

stages. 

1) based on the DFT, there are spectral readings of the input time discretized 

signal  x k  

   
21

0

N j nk
N

n

k

X X k e



 



  ; 

2) spectral readings of the transfer function are based on the DFT 

   

2
1

0

j nkN N

n

k

H h k e









  ; 

3) the convolution of the spectral readings of the signal and the spectral 

readings of the transfer function is carried out 

   n HX H  ; 

4) the inverse discrete Fourier transform from the convolution of two 

sequences is performed 

     
21

0

1 N j nk
N

n n

n

g k x n H e
N




 



  . 

The result of the 4th stage will be the output numerical sequence  y k  

(output signal). 

The structural diagram of digital filtering in the frequency domain is shown 

in Fig. 2.68. 

 
Fig. 2.68. The structural scheme of the parallel implementation of the DF 

 

2.7.7.2. The Fast Fourier Transform 

Analyzing the given scheme, we see that the digital filtering algorithm in the 

frequency domain is reduced to direct and inverse DFT. 

According to the formula of direct DFT 

DFT Х IDFT 

Нn(ω) 

х(k) 

Хn(ω) Нn(W)Хn(ω у(k) 
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to calculate N  values of spectral readings  kX  , approximately 2N  

multiplications and 2N  additions must be performed. As N  increases, the time to 

calculate  kX   increases significantly. The same situation is observed when 

calculating the inverse DFT. 

Fast Fourier transform (FFT) algorithms have been developed to speed up 

the DFT calculation. 

Let us consider the base-2 FFT algorithms that are applied to sequences of 

length 2kN  . 

The main idea of FFT is as follows. The sequence  X k  is divided into two 

2

Ν
-point sequences  1X k  and  2X k , for which the sequences of spectral readings

  1nX   and   2nX   are found. Then, based on the spectral readings of these 

sequences, the required N-point FFT   nX   is determined. 

If the last operation will be performed simply and will not require complex 

calculations, then to determine 2kN   spectral readings, it is necessary to perform 
2 2 2

2 2 2

N N N
+ =

   
   
   

 operation. 

If you continue the process of splitting   1X k  and   2X k  sequences into 

two parts and finding their own FFTs for each of them, you can significantly 

reduce the number of operations. 

Let us consider the DFT of the sequence  X k ,    
21

0

n j nk
N

n

k

X X k e



 



  . 

Letʼs enter a value 

2
j

Ν

π

NW = e



. Then    
1
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n
kn

n N

k

X X k W






  . 

Let's divide   X k  into two parts   1Χ k  and   2Χ k , containing, 

respectively, even and odd terms   Χ k , 

     1 2Χ k Χ k , 0,1,2...
2 1

N
k 


; 

     2 2 1Χ k Χ k  , 0,1,2...
2 1

N
k 


. 

Then, since 
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  then 2 /2NN
W W . 

Thus, 
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Hence      1 2

n

n n n NX X X W    , for 0 1
2

Ν
n   , i.e., this expression 

allows you to determine the spectral readings from 0 to 1
2

Ν
 . 

The spectral readings from 
2

Ν
 to N  are calculated based on the second 

expression 

     1 2

2

n

N n n N
n

X X X W  


  . 

These formulas represent the basic operation of the FFT (the so-called 

“butterfly”). 

A schematic image of the “butterfly” can be shown in fig. 2.69. 

  
Fig. 2.69. Schematic representation of the operation “butterfly” 

 
On the other hand, 4-point transformations can be determined through 2-

point transformations, which are calculated according to the formulas: 

         

1 1
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      ; 

    0

/40n NX X W   ;      1 0 1X X X  ; 

    1

1 /40 NX X W    ;      1 1 2X X X  . 

It was previously shown that 2N  multiplications are required for direct FFT 

calculation, and 2logN N  multiplication operations for N -point FFT. So, the FFT 
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algorithm reduces the number of operations by 
2

2log

N

N N
 times. So, with 1024N  , 

100 times. 

 

2.7.8. Synthesis of digital filters 

 

We will consider the issue of DF synthesis on the example of solving the RF 

synthesis problem. Two methods are possible: 

– a direct direct determination of filter parameters by time or frequency 

characteristics; 

– an indirect definition based on the discretization of an analog filter that 

satisfies the specified requirements. 

At the same time, it is proposed to perform two stages. 

At the first stage, a suitable analog filter prototype is selected. At the second 

stage, the transition from the prototype analog filter to the digital filter is carried 

out. 

We have a number of methods of implementing analog filters. Let's consider 

one of the simplest methods of bilinear transformation. 

According to this method, the variable p of the transfer function of the analog 

filter  H p  is replaced by jp e  , which is the argument of the transfer function 

of the digital filter  H z . 

This replacement is performed using different formulas for different types of 

filters. 

For example, for LPF 
1

1

1

1

z
p y

z









, i.e    

1

1

1 2

1 2p
H z H p y






 


. 

In the process of this transformation, a nonlinear transformation of 

frequencies is performed. The ratio between the frequencies of the p -plane 

(analog frequency  ) and the frequencies of the z -plane (digital frequencies  ) 

is determined by the expression  y tg    , where y  is the conversion 

coefficient, which is equal to y ctg . 

 

Control questions and tasks  

1. What is the filter cutoff frequency and under what condition is it 

determined ? 

2. Why does LPF pass low-frequency signals and not high-frequency signals 

? 

3. How is it possible to change the cut-off frequency of the HPF ? 

4. Why does the phase characteristic change sign in the RF transparency 

band (Fig. 3b) ? 

5. Under what conditions is the quasi-resonant frequency of the SF 

determined ? 

6. Why does RF pass signals of both low and high frequencies ? 
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7. Explain the principle of action LPF and its AFC. 

8. Explain the principle of action of HPF and its AFC. 

9. Explain the principle of action of BF and its AFC.  

10. How to experimentally determine the limit frequencies of the filter ? 

11. How does the loss resistance of inductive coils affect AFC and PFC of 

filters ? 

12. Show that LPF (Fig. 2) and HPF (Fig. 4) are K-type filters. 

13. What are the conditions for matching filters ? 

14. How is the transmission constant of the filter determined ? 

15. What transformations take place during digital signal processing ? 

16. What is a discrete signal and a discrete sequence ? 

17. What are the relationships and differences between the spectra of discrete 

and analog signals ? 

18. How to determine the spectrum of the corresponding discrete signal from 

the known spectrum of an analog signal ? 

19. What is the phenomenon of overlapping spectra when discretizing 

signals ? 

20. How is digital signal coding carried out ? 

21. How is the autocorrelation function and spectral density of ADC 

quantization noise determined ? 

22. It is known that in order to obtain intelligible human speech, it is 

sufficient to sample it with a frequency of 8 kHz. What frequency range can be 

correctly transmitted by such a digital recording ? What must be done in the case 

of sampling to correctly transmit this range ? 

23. The signal x[n], which is different from zero on the segment [A,B], is 

convolved with the signal h[n], which is different from zero on the segment [C,D]. 

Find the segment on which the resulting signal can be different from zero. 

24. Calculate how many multiplications need to be done to calculate the 

convolution of a signal of length N with a kernel of length M. 

25. The signal sampling frequency is 44100 Hz. The size of the FFT is 4096. 

What is the length of the analyzed block in seconds? At what frequencies (in hertz) 

will the signal be decomposed? 

26. What frequency resolution of the spectrum will we get in the previous 

example? What size FFT should be used to get a frequency resolution of about 4 

Hz? 

27. Implement finding and displaying the spectrum of a given signal section. 

Enter the possibility of choosing the length of the signal, the size of the FFT, the 

type of the weight window. 

28. Implement fast convolution of two signals through the frequency 

domain. 

29. Implement sectional convolution of two signals through the frequency 

domain. 
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30. Implement the filter design algorithm according to the given frequency 

response. Design a low-pass filter with arbitrary parameters. 

31. Show analytically that the inverse DFT can be performed using the 

relation (1.12). 

32. Numerically perform DFT according to formulas (1.7), (1.8), (1.12) and 

compare the reconstructed signals. Calculate their frequency response and 

frequency response. 

33. Calculate the inverse DFT in accordance with (1.13), using only 

information about the FFC of the signal. 

34. What is the difference between a recursive filter and a non-recursive one? 

Write the equations for both filters. 

35. What is the task of designing digital filters? What approaches are used in 

this case? 

36. What does the filtering algorithm using DPF look like? 

37. What technical limitations affect the characteristics of designed filters? 
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